Skip to main content
Log in

Stochastic tracking of mesoscale convective systems: evaluation in the West African Sahel

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In this work we apply a recently proposed Bayesian multiple target tracking model to mesoscale convective systems tracking. This stochastic model follows the multiple hypothesis tracking paradigm and can handle a varying number of targets while detecting the target birth, death, split, and merge events. The model is tested experimentally with real MCS targets detected from meteosat IR data over the Sahelian region. The performance of the stochastic tracking is evaluated by comparing it qualitatively and quantitatively with well established deterministic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Addesso P, Conte R, Longo M, Restaino R, Vivone G (2012) Map-mrf cloud detection based on phd filtering. Sel Top Appl Earth Obs Remote Sens IEEE J 5(3):919–929. doi:10.1109/JSTARS.2012.2191144

    Article  Google Scholar 

  • Avenel C, Mmin E, Prez P (2014) Stochastic level set dynamics to track closed curves through image data. J Math Imaging Vis 49(2):296–316. doi:10.1007/s10851-013-0464-1

    Article  Google Scholar 

  • Balme M, Vischel T, Lebel T, Peugeot C, Galle S (2006) Assessing the water balance in the sahel: impact of small scale rainfall variability on runoff: part 1: rainfall variability analysis. J Hydrol 331(1–2):336–348

    Article  Google Scholar 

  • Bar-Shalom Y, Willett PK, Tian X (2011) Tracking and data fusion: a handbook of algorithms, YBS Publishing, Storrs

    Google Scholar 

  • Blackman S (2004) Multiple hypothesis tracking for multiple target tracking. Aerosp Electron Syst Mag IEEE 19(1):5–18. doi:10.1109/MAES.2004.1263228

    Article  Google Scholar 

  • Desbois M, Kayiranga T, Gnamien B, Guessous S, Picon L (1988) Characterization of some elements of the sahelian climate and theirinterannual variations for july 1983, 1984 and 1985 from theanalysis of METEOSAT ISCCP data. J Clim 1(9),867–904 (1988). doi:10.1175/1520-0442

    Article  Google Scholar 

  • Dixon M, Wiener G (1993) TITAN: thunderstorm identification, tracking, analysis and nowcasting—a radar-based methodology. J Atmos Ocean Technol 10:785–797

    Article  Google Scholar 

  • Fiolleau T, Roca R (2013) An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. Geosci Remote Sens IEEE Trans 51(7):4302–4315. doi:10.1109/TGRS.2012.2227762

    Article  Google Scholar 

  • Goutte C, Gaussier E (2005) A probabilistic interpretation of precision, recall and f-score, with implication for evaluation. In: Advances in information retrieval. Springer, Berlin, pp 345–359

  • Guillot G, Lebel T (1999) Approximation of sahelian rainfall fields with meta-gaussian random functions. Stoch Environ Res Risk Assess 13(1–2):113–130

    Article  Google Scholar 

  • Houze RA (2004) Mesoscale convective systems. Rev Geophys 42(4):1944–9208. doi:10.1029/2004RG000150

    Article  Google Scholar 

  • Johnson J, MacKeen P, Witt A, Mitchell E, Stumpf G, Eilts M, Thomas K (1998) The storm cell identification and tracking algorithm: an enhanced WSR-88D algorithm. Weather Forecast 13:263–276

    Article  Google Scholar 

  • Kastella K (1995) Event-averaged maximum likelihood estimation and mean-field theory in multitarget tracking. Autom Control IEEE Trans 40(6):1070–1074. doi:10.1109/9.388686

    Article  Google Scholar 

  • Kreucher C, Kastella K, Hero A (2005) Multitarget tracking using the joint multitarget probability density. Aerosp Electron Syst IEEE Trans 41(4):1396–1414. doi:10.1109/TAES.2005.1561892

    Article  Google Scholar 

  • Kwon HH, Lall U, Obeysekera J (2009) Simulation of daily rainfall scenarios with interannual and multidecadal climate cycles for south florida. Stoch Environ Res Risk Assess 23(7):879–896. doi:10.1007/s00477-008-0270-2

    Article  Google Scholar 

  • Lakshmanan V, Miller M, Smith T (2013) Quality control of accumulated fields by applying spatial and temporal constraints. J Atmos Ocean Technol 30:745–757

    Article  Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the central and western sahel rainfall regime (1990–2007). J Hydrol 375(1–2):52–64

    Article  Google Scholar 

  • Lebel T, Delclaux F, Le Barb L, Polcher J (2000) From gcm scales to hydrological scales: rainfall variability in west africa. Stoch Environ Res Risk Assess 14(4–5):275–295. doi:10.1007/s004770000050

    Article  Google Scholar 

  • Lebel T, Diedhiou A, Laurent H (2003) Seasonal cycle and interannual variability of the sahelian rainfall at hydrological scales. J Geophys Res 108:83–89. doi:10.1029/2001JD001,580

    Google Scholar 

  • Long T, Zheng L, Chen X, Li Y, Zeng T (2011) Improved probabilistic multi-hypothesis tracker for multiple target tracking with switching attribute states. Signal Process IEEE Trans 59(12):5721–5733. doi:10.1109/TSP.2011.2167616

    Article  Google Scholar 

  • Ma J, Antoniadis A, Le Dimet FX (2006) Curvelet-based snake for multiscale detection and tracking of geophysical fluids. Geosci Remote Sens IEEE Trans 44(12):3626–3638. doi:10.1109/TGRS.2006.885017

    Article  Google Scholar 

  • Mahler R (2003) Multitarget bayes filtering via first-order multitarget moments. Aerosp Electron Syst IEEE Trans 39(4):1152–1178. doi:10.1109/TAES.2003.1261119

    Article  Google Scholar 

  • Makris A, Prieur C (2014) Bayesian multiple-hypothesis tracking of merging and splitting targets. Geosci Remote Sens IEEE Trans 52(12):7684–7694. doi:10.1109/TGRS.2014.2316600

    Article  Google Scholar 

  • Mathon V, Laurent H (2001) Life cycle of sahelian mesoscale convective cloud systems. Q J R Meteorol Soc 127(572):377–406. doi:10.1002/qj.49712757208

    Article  Google Scholar 

  • Mathon V, Laurent H, Lebel T (2002) Mesoscale convective system rainfall in the sahel. J Appl Meteorol 41:1081–1092

    Article  Google Scholar 

  • Miller ML, Lakshmanan V, Smith TM (2012) An automated method for depicting mesocyclone paths and intensities. Weather Forecas 28(3):570–585. doi:10.1175/WAF-D-12-00065.1

    Article  Google Scholar 

  • Morelande M, Kreucher C, Kastella K (2007) A bayesian approach to multiple target detection and tracking. Signal Process IEEE Trans 55(5):1589–1604. doi:10.1109/TSP.2006.889470

    Article  Google Scholar 

  • Mukherjee D, Acton S (2002) Cloud tracking by scale space classification. Geosci Remote Sens IEEE Trans 40(2):405–415. doi:10.1109/36.992803

    Article  Google Scholar 

  • Onof C, Chandler RE, Kakou A, Northrop P, Wheater HS, Isham V (2000) Rainfall modelling using poisson-cluster processes: a review of developments. Stoch Environ Res Risk Assess 14(6):384–411. doi:10.1007/s004770000043

    Article  Google Scholar 

  • Panta K, Vo BN, Singh S (2007) Novel data association schemes for the probability hypothesis density filter. Aerosp Electron Syst IEEE Trans 43(2):556–570. doi:10.1109/TAES.2007.4285353

    Article  Google Scholar 

  • Panta K, Clark D, Vo BN (2009) Data association and track management for the gaussian mixture probability hypothesis density filter. Aerosp Electron Syst IEEE Trans 45(3):1003–1016. doi:10.1109/TAES.2009.5259179

    Article  Google Scholar 

  • Panthou G, Vischel T, Lebel T (2014) Recent trends in the regime of extreme rainfall in the central sahel. International Journal of Climatology 34:3998–4006. doi:10.1002/joc.3984

    Article  Google Scholar 

  • Papin C, Bouthemy P, Mémin E, Rochard G (2000) Tracking and characterization of highly deformable cloud structures. In: Vernon D (ed) Computer vision ECCV 2000, lecture notes in computer science, vol 1843. Springer, Berlin, pp 428–442. doi:10.1007/3-540-45053-X_28

    Chapter  Google Scholar 

  • Pece AEC (2002) The problem of sparse image coding. J Math Imaging Vis 17(2):89–108. doi:10.1023/A:1020677318841. Special issue on statistics of shapes and textures

    Article  Google Scholar 

  • Pulford G (2005) Taxonomy of multiple target tracking methods. Radar Sonar Navig IEE Proc 152(5):291–304. doi:10.1049/ip-rsn:20045064

    Article  Google Scholar 

  • Reid DB (1979) An algorithm for tracking multiple targets. IEEE Trans Autom Control 24:843–854

    Article  Google Scholar 

  • Root B, Yu TY, Yeary M (2011) Consistent clustering of radar reflectivities using strong point analysis: a prelude to storm tracking. Geosci Remote Sens Lett IEEE 8(2):273–277. doi:10.1109/LGRS.2010.2070787

    Article  Google Scholar 

  • Salari V, Sethi IK (1990) Feature point correspondence in the presence of occlusion. IEEE Trans Pattern Anal Mach Intel 12(1):87–91

    Article  Google Scholar 

  • Sethi IK, Jain R (1987) Finding trajectories of feature points in a monocular image sequence. Pattern Anal Mach Intel IEEE Trans 1:56–73

    Article  Google Scholar 

  • Storlie C, Lee T, Hannig J, Nychka D (2009) Tracking of multiple merging and splitting targets: a statistical perspective. Statistica Sinica 19(1):1–52. doi:URL http://nldr.library.ucar.edu/repository/collections/OSGC-000-000-000-072

  • Thomas C, Corpetti T, Memin E (2010) Data assimilation for convective-cell tracking on meteorological image sequences. Geosci Remote Sens IEEE Trans 48(8):3162–3177. doi:10.1109/TGRS.2010.2045504

    Article  Google Scholar 

  • Ulmke M, Erdinc O, Willett P (2007) Gaussian mixture cardinalized phd filter for ground moving target tracking. In: Information fusion, 2007 10th international conference on, pp. 1–8. doi: 10.1109/ICIF.2007.4408105

  • Vila DA, Machado LAT, Laurent H, Velasco I (2008) Forecast and tracking the evolution of cloud clusters (fortracc) using satellite infrared imagery: methodology and validation. Weather Forecast 23(2):233–245. doi:10.1175/2007WAF2006121.1

    Article  Google Scholar 

  • Vischel T, Lebel T, Massuel S, Cappelaere B (2009) Conditional simulation schemes of rain fields and their application to rainfallrunoff modeling studies in the sahel. J Hydrol 375(12), 273–286. doi:10.1016/j.jhydrol.2009.02.028. Surface processes and water cycle in West Africa, studied from the AMMA-CATCH observing system

  • Vischel T, Quantin G, Lebel T, Viarre J, Gosset M, Cazenave F, Panthou G (2011) Generation of high resolution rainfields in west Africa: evaluation of dynamical interpolation methods. J Hydrometeorol. doi:10.1175/JHM-D-10-05015.1

    Google Scholar 

  • Vo BN, Ma WK (2006) The gaussian mixture probability hypothesis density filter. Signal Process IEEE Trans 54(11):4091–4104. doi:10.1109/TSP.2006.881190

    Article  Google Scholar 

  • Vo BN, Singh S, Doucet A (2005) Sequential monte carlo methods for multitarget filtering with random finite sets. Aerosp Electron Syst IEEE Trans 41(4):1224–1245. doi:10.1109/TAES.2005.1561884

    Article  Google Scholar 

  • Vo BT, Vo BN, Cantoni A (2006) The cardinalized probability hypothesis density filter for linear gaussian multi-target models. In: Information sciences and systems, 2006 40th annual conference on, pp. 681–686. doi: 10.1109/CISS.2006.286554

  • Wu SJ, Tung YK, Yang JC (2006) Stochastic generation of hourly rainstorm events. Stoch Environ Res Risk Assess 21(2):195–212. doi:10.1007/s00477-006-0056-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Makris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makris, A., Prieur, C., Vischel, T. et al. Stochastic tracking of mesoscale convective systems: evaluation in the West African Sahel. Stoch Environ Res Risk Assess 30, 681–691 (2016). https://doi.org/10.1007/s00477-015-1102-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1102-9

Keywords

Navigation