Skip to main content
Log in

Sustainable groundwater resources exploration and management in a complex geological setting as part of a humanitarian project (Mahafaly Plateau, Madagascar)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Southwestern Madagascar is a semi-arid region and a hot-spot of global change. On the Mahafaly plateau, people live with quasi-permanent water stress and groundwater, the only available resource, is difficult to exploit due to a complex hydrogeological environment. A methodology (suitable for humanitarian projects; < 40 k€) was developed in four phases to assess the sustainable exploitation of the water resource: (A) regional scale exploration, (B) village scale exploration, (C) drilling campaign, and (D) hydro-climatic monitoring. This integrated hydrogeophysical approach involves geophysical measurements (262 TEM-fast soundings, 2588 Slingram measurements, 35 electrical soundings), hydrochemical analyses (112 samples), and a piezometric survey (127 measurements). Two groundwater resources were identified, one deep (below 150 m) and one shallow (< 20 m). Hydrochemical results highlighted the vulnerability of both resources: anthropic contamination for the shallower and seawater intrusion for the deeper. Therefore, subsequent geophysical surveys supported the siting of six boreholes and three wells in the shallow aquifer. This methodological approach was successful in this complex geological setting and requires testing at other sites in and outside Madagascar. The study demonstrates that geophysical results should be used in addition to drilling campaigns and to help monitor the water resource. In fact, to prevent over-exploitation, piezometric and meteorological sensors were installed to monitor the water resource. This unique hydro-climatic observatory may help (1) non-governmental organization and local institutions prevent future water shortages and (2) scientists to understand better how global change will affect this region of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AEMR (2005a) TEM-FAST 48 manual. AEMR, Amsterdam. http://www.AEMR.net. Accessed 22 Nov 2017

  • AEMR (2005b) TEM-RESEARCHER manual, v. 7. AEMR, Amsterdam. http://www.AEMR.net. Accessed 22 Nov 2017

  • Alcalá FJ, Custodio E (2008) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359:189–207. https://doi.org/10.1016/j.jhydrol.2008.06.028

    Article  Google Scholar 

  • André G, Bergeron G, Guyot L (2005) Contrôle structural et tectonique sur l’hydrogéologie karstique du plateau Mahafaly (domaine littoral semi-aride, sud-ouest de Madagascar). Karstologia 45–46:29–40

    Google Scholar 

  • Aurouze J (1957) Carte et notice hydrogéologique du Sud de Madagascar. Service Géologique de Madagascar, Antananarivo, Madagascar

    Google Scholar 

  • Barsukov P, Fainberg E, Khabensky E (2006) Shallow investigations by TEM-FAST technique: methodology and examples. Methods Geochem Geophys 40:55–77. https://doi.org/10.1016/S0076-6895(06)40003-2

    Article  Google Scholar 

  • Bésaire H (1946) La géologie de Madagascar en 1946. Ann Géol Serv Mines Madagascar 12:1–29

    Google Scholar 

  • Besairie H (1970) Carte géologique de Madagascar: 1/500000 Ampanihy. Service Géologique de Madagascar, Antananarivo

    Google Scholar 

  • Besairie H, Pavlovsky R (1950) Notice explicative de la carte hydrogéologique du Sud de Madagascar, n°16. Service Géologique de Madagascar, Antananarivo

    Google Scholar 

  • Bobachev C (2002) IPI2Win: a Windows software for an automatic interpretation of resistivity sounding data. Moscow State University, Moscow, p 320

  • Carter R (2007) Rapid assessment of groundwater opportunities for displaced and refugee populations. Waterlines 26:2–4

    Article  Google Scholar 

  • Chaperon P, Danloux J, Ferry L (1993) Fleuves et rivières de Madagascar. Collection “Monographie Hydrologique” 10. ORSTOM, Paris

    Google Scholar 

  • Copin-Montegut G (1997) Chimie de l’eau de mer. Editions Institut Océanographique, Collection Synthèse, Paris

    Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3(1):52–58. https://doi.org/10.1038/nclimate1633

    Article  Google Scholar 

  • De Saint-Ours J (1959) Campagne de recherches hydrogéologiques dans le Sud (zone I à IV). Service Géologique de Madagascar, Antananarivo

    Google Scholar 

  • De Haut de Sigy G (1965) Etude Agronomique de la cuvette d’Ankazomanga, sous-préfecture de Betioky, province de Tuléar. IRAM, Antananarivo

    Google Scholar 

  • Descloitres M, Chalikakis K, Legchenko A, Moussa AM, Genthon P, Favreau G, Le Coz M, Boucher M, Oï M (2013) Investigation of groundwater resources in the Komadugu Yobe Valley (Lake Chad Basin, Niger) using MRS and TDEM methods. J Afr Earth Sci 87:71–85. https://doi.org/10.1016/j.jafrearsci.2013.07.006

    Article  Google Scholar 

  • Edet A, Okereke C (2002) Delineation of shallow groundwater aquifers in the coastal plain sands of Calabar area (Southern Nigeria) using surface resistivity and hydrogeological data. J Afr Earth Sci 35:433–443. https://doi.org/10.1016/S0899-5362(02)00148-3

    Article  Google Scholar 

  • Ferry L, L’Hote Y, Wesselink A(1998) Les précipitations dans le sud-ouest de Madagascar. In: The Abidjan ’98 conference, Abidjan. IAHS, pp 89–96

  • Fews-Net (2018) Famine early warning systems network. https://earlywarning.usgs.gov/fews/ewx/index.html. Accessed 25 Feb 2018

  • Fontes JCh, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France. 1. Brines associated with Triassic salts. Chem Geol 109:149–175. https://doi.org/10.1016/0009-2541(93)90068-T

    Article  Google Scholar 

  • Fudge R (1974) Handbook of geochemistry. Edition Springer: Sect. 35-A-1 to 35-O-2

  • Goldman M, Neubauer F (1994) Groundwater exploration using integrated geophysical techniques. Surv Geophys 15:331–361. https://doi.org/10.1007/BF00665814

    Article  Google Scholar 

  • Goldman M, Arad A, Kafri U, Gilad D, Melloul A (1988) Detection of freshwater/seawater interface by the time domain electromagnetic (TDEM) method in Israel. Naturwet Tijdsehr 70:339–344

    Google Scholar 

  • Guyot L (2002) Reconnaissance hydrogéologique pour l’alimentation en eau d’une plaine littorale en milieu semi-aride: Sud-Ouest de Madagascar, Ph.D. Thesis. Univ. de Nantes, Nantes

    Google Scholar 

  • Hoareau J, Lapague J, Vouillamoz JM, Livovschi I (2010) Utilisation du TEM-FAST dans le cadre de missions de prospection géophysique. ACF-International, Paris

    Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report, Geneva

  • Jackson JM, Skokan CK, Muñoz DR (2009) Humanitarian engineering: groundwater investigation for St. Denis Secondary School, Makondo, Uganda. In: Symposium on the application of geophysics to engineering and environmental problems. Society of Exploration Geophysicists, pp 958–964. https://doi.org/10.4133/1.3176790

  • Karche J-P (1961) Contribution à l’étude géologique et hydrogéologique du plateau calcaire Mahafaly et aperçu sur l’hydrogéologie de Madagascar, Ph.D. Thesis. Univ. de Paris, Paris

    Google Scholar 

  • Karche J-P (1963) Stratigraphie du plateau Mahafaly à Madagascar. CR Sem. Géol. Mad, pp 75–79

  • Katz BG, Eberts SM, Kauffman LJ (2011) Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: a review and examples from principal aquifers in the United States. J Hydrol 397:151–166. https://doi.org/10.1016/j.jhydrol.2010.11.017

    Article  Google Scholar 

  • Krivochieva S (2002) Application des méthodes électromagnétiques transitoires à la prospection des aquifères profonds, Ph.D. Thesis. École polytechnique de Montréal, Montreal

    Google Scholar 

  • Lachaal F, Bédir M, Tarhouni J, Gacha AB, Leduc C (2011) Characterizing a complex aquifer system using geophysics, hydrodynamics and geochemistry: a new distribution of Miocene aquifers in the Zéramdine and Mahdia–Jébéniana blocks (east-central Tunisia). J Afr Earth Sci 60:222–236. https://doi.org/10.1016/j.jafrearsci.2011.03.003

    Article  Google Scholar 

  • Lavee H, Imeson A, Sarah P (1998) The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect. Land Degrad Dev 9:407–422. https://doi.org/10.1002/(SICI)1099-145X(199809/10)9:5%3C407::AID-LDR302%3E3.0.CO;2-6

    Article  Google Scholar 

  • Lazzarini A, Ratsimbazafy S (2013) Programme de prévention de la malnutrition dans cinq communes du district de Betioky Atsimo, Région Atsimo Andrefana - Volet “Eau, Assainissement et Hygiène”—Rapport d’enquête CAP initiale. ACF Madagascar, Antananarivo

    Google Scholar 

  • Leduc C, Ben Ammar S, Favreau G, Beji R, Virrion R, Lacombe G, Tarhouni J, Aouadi C, Zenati Chelli B, Jebnoun N, Oi M, Michelot JL, Zouari K (2007) Impacts of hydrological changes in the Mediterranean zone: environmental modifications and rural development in the Merguellil catchment, central Tunisia. Hydrol Sci J 52:1162–1178. https://doi.org/10.1623/hysj.52.6.1162

    Article  Google Scholar 

  • Lee J, Boucher M, Favreau G, Ngatcha BN, Matchuenkam F, Allah MN, Goni IB, Aji MM, Nur M, Fuemba R (2015) Toward the prevention of cholera outbreak in Douala, Cameroon: Exploration of fresh groundwater using MRS and TDEM. In: SEG Technical Program Expanded Abstracts 2015. Society of Exploration Geophysicists, pp 4982–4986. https://doi.org/10.1190/segam2015-5929769.1

  • Lytton L, Bolger P (2010) The role of science in solving wicked water problems–examples from groundwater management in emergency contexts. IAHS-AISH Publication, pp 266–267. https://iahs.info/uploads/dms/15090.76-266-267-Lytton-Bolger.pdf. Accessed 22 Nov 2017

  • McNeill JD (1980) Electrical conductivity of soils and rocks. Technical Note TN-5. Geonics Limited, Ontario

    Google Scholar 

  • McNeill JD (1986) Electromagnetic terrain conductivity measurement at low induction numbers. Technical Note TN-6. Geonics Limited, Ontario

    Google Scholar 

  • Moustadraf J, Razack M, Sinan M (2008) Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modeling. Hydrogeol J 16:1411–1426. https://doi.org/10.1007/s10040-008-0311-4

    Article  Google Scholar 

  • Rabemanana V, Violette S, De Marsily G, Robain H, Deffontaines B, Andrieux P, Bensimon M, Parriaux A (2005) Origin of the high variability of water mineral content in the bedrock aquifers of Southern Madagascar. J Hydrol 310:143–156. https://doi.org/10.1016/j.jhydrol.2004.11.025

    Article  Google Scholar 

  • Re V, Cissé Faye S, Faye A, Faye S, Gaye CB, Sacchi E, Zuppi GM (2011) Water quality decline in coastal aquifers under anthropic pressure: the case of a suburban area of Dakar (Senegal). Environ Monit Assess 172:605–622. https://doi.org/10.1007/s10661-010-1359-x

    Article  Google Scholar 

  • Skokan C, Munoz D (2010) An integrated groundwater study: Chasnigua, Honduras. In: Symposium on the application of geophysics to engineering and environmental problems. Society of Exploration Geophysicists, pp 245–252. https://doi.org/10.4133/1.3445440

  • Sphere (2015) The Sphere Project: humanitarian charter and minimum standards in disaster response. Oxfam, Geneva. ISBN: 0-85598-445-7

    Google Scholar 

  • Taylor RG, Scanlon B et al (2013) Ground water and climate change. Nat Clim Change 3:322–329. https://doi.org/10.1038/nclimate1744

    Article  Google Scholar 

  • Villholth KG, Neupane B (2011) Tsunamis as long-term hazards to coastal groundwater resources and associated water supplies. In: Tsunami-A growing disaster. InTechOpen. https://cdn.intechopen.com/pdfs-wm/24938.pdf. Accessed 22 Nov 2017

  • Vouillamoz J-M, Descloitres M, Bernard J, Fourcassier P, Romagny L (2002) Application of integrated magnetic resonance sounding and resistivity methods for borehole implementation. A case study in Cambodia. J Appl Geophys 50:67–81. https://doi.org/10.1016/S0926-9851(02)00130-1

    Article  Google Scholar 

  • Wilkinson CR (1996) Global change and coral reefs: impacts on reefs, economies and human cultures. Glob Change Biol 2:547–558. https://doi.org/10.1111/j.1365-2486.1996.tb00066.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to: the donors (Sustainable Initiatives for Water (SIWA), DG International Cooperation and Development (DEVCO), Agence de l’Eau Loire-Bretagne (AELB), Agence de l’Eau Adour-Garonne (AEAG), Syndicat Intercommunal Garrigues Campagne, Ville de la Rochelle, Conseil Régional Midi Pyrénées, Action Contre la Faim (ACF)); the local partners (the Malagasy Water Direction (DREAH), the Malagasy Meteorological Direction (SMR)); the AAH members who work on this project (Aude Lazzarini, Esteban Vallejo, Karl Lellouche, Nicolas Guibert).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Damien Carrière.

Additional information

This article is a part of Topical Collection in Environmental Earth Sciences on Water Sustainability: A Spectrum of Innovative Technology and Remediation Methods, edited by Dr. Derek Kim, Dr. Kwang-Ho Choo, and Dr. Jeonghwan Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Hydrochemical analysis (XLSX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrière, S.D., Chalikakis, K., Ollivier, C. et al. Sustainable groundwater resources exploration and management in a complex geological setting as part of a humanitarian project (Mahafaly Plateau, Madagascar). Environ Earth Sci 77, 734 (2018). https://doi.org/10.1007/s12665-018-7909-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7909-1

Keywords

Navigation