Skip to main content

Advertisement

Log in

The sensitivity of the Late Saalian (140 ka) and LGM (21 ka) Eurasian ice sheets to sea surface conditions

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This work focuses on the Late Saalian (140 ka) Eurasian ice sheets’ surface mass balance (SMB) sensitivity to changes in sea surface temperatures (SST). An Atmospheric General Circulation Model (AGCM), forced with two preexisting Last Glacial Maximum (LGM, 21 ka) SST reconstructions, is used to compute climate at 140 and 21 ka (reference glaciation). Contrary to the LGM, the ablation almost stopped at 140 ka due to the climatic cooling effect from the large ice sheet topography. Late Saalian SST are simulated using an AGCM coupled with a mixed layer ocean. Compared to the LGM, these 140 ka SST show an inter-hemispheric asymmetry caused by the larger ice-albedo feedback, cooling climate. The resulting Late Saalian ice sheet SMB is smaller due to the extensive simulated sea ice reducing the precipitation. In conclusion, SST are important for the stability and growth of the Late Saalian Eurasian ice sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abe-Ouchi A, Segawa T, Saito F (2007) Climatic conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle. Clim Past 3:423–438

    Article  Google Scholar 

  • Abreu L, Shackleton N, Schonfeld J, Hall M, Chapman M (2003) Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Mar Geol 196(1):1–20

    Article  Google Scholar 

  • Berger A, Loutre M (1991) Insolation values for the climate of the last 10 millions years. Quat Sci Rev 10(4):297–317

    Article  Google Scholar 

  • Bianchi C, Gersonde R (2002) The southern ocean surface between marine isotope stages 6 and 5d: shape and timing of climate changes. Palaeogeogr Palaeoclimatol 187:151–177

    Article  Google Scholar 

  • Broecker W (1998) Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13(2):119–121

    Article  Google Scholar 

  • Calvo E, Villanueva J, Grimalt J, Boelaert A, Labeyrie L (2001) New insights into the glacial latitudinal temperature gradients in the North Atlantic. Results from UK’37 sea surface temperatures and terrigenous inputs. Earth Planet Sci Lett 188(3–4):509–519

    Article  Google Scholar 

  • Chapman M, Shackleton N, Duplessy J (2000) Sea surface temperature variability during the last glacial-interglacial cycle: assessing the magnitude and pattern of climate change in the North Atlantic. Palaeogeogr Palaeoclimatol 157(1):1–25

    Article  Google Scholar 

  • Chen M, Chang Y, Chang C, Wang L, Wang C, Yu E (2002) Late Quaternary sea-surface temperature variations in the southeast Atlantic: a planktic foraminifer faunal record of the past 600 000 yr (IMAGES II MD962085). Mar Geol 180(1–4):163–181

    Article  Google Scholar 

  • Chen M, Shiau L, Yu P, Chiu T, Chen Y, Wei K (2003) 500 000-year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island). Palaeogeogr Palaeoclimatol 197(1–2):113–131

    Article  Google Scholar 

  • Clark P, Pisias N, Stocker T, Weaver A (2002) The role of the thermohaline circulation in abrupt climate change. Nature 415:863–869

    Article  Google Scholar 

  • CLIMAP (1984) The last interglacial ocean. Quat Res 21:123–224

    Google Scholar 

  • Colleoni F, Krinner G, Jakobsson M (2009a) Sensitivity of the Late Saalian (140 kyrs BP) and LGM (21 kyrs BP) Eurasian ice sheet surface mass balance to vegetation feedbacks. Geophys Res Lett 36:L08,704

    Article  Google Scholar 

  • Colleoni F, Krinner G, Jakobsson M, Peyaud V, Ritz C (2009b) Influence of dust deposition and proglacial lakes on the surface mass balance of the large Eurasian ice sheet during the peak Saalian (140 kyrs BP). Glob Planet Change 28:132–148

    Article  Google Scholar 

  • Crowley T (1981) Temperature and circulation changes in the eastern North Atlantic during the last 150,000 years: Evidence from the planktonic foraminiferal record. Mar Micropaleontol 6(2):97–129

    Article  Google Scholar 

  • Crowley T (1995) Ice age terrestrial carbon changes revisited. Global Biogeochem Cycles 9(3):377–389

    Article  Google Scholar 

  • Delmonte B et al. (2004) EPICA Dome C Ice Cores Insoluble Dust Data

  • Dong B, Valdes P (1998) Simulations of the Last Glacial Maximum climates using a generalcirculation model: prescribed versus computed sea surface temperatures. Clim Dyn 14:571–591

    Article  Google Scholar 

  • Fraedrich K, Jansen H, Kirk E, Luksch U, Lunkeit F (2005) The Planet Simulator: towards a user friendly model. Meteorol Z 14:299–304

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409:153–158

    Article  Google Scholar 

  • Goni MA, D M Hartz RCT, Tappa E (2001) Oceanographic considerations for the application of the alkenone-based paleotemperature U37K? index in the Gulf of California. Geochim Cosmochim Acta 65(4):545–557

  • Hays J, Imbrie J, Shackleton N (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 196:1121–1132

    Article  Google Scholar 

  • Hebbeln D, Dokken T, Andersen E, Hald M, Elverhoi A (1994) Moisture supply for northern ice-sheet growth during the Last Glacial Maximum. Nature 370:357–360

    Article  Google Scholar 

  • Hippler D, Eisenhauer A, Nagler T (2006) Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140ka. Geochim Cosmochim Acta 70(1):90–100

    Article  Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Frieflingstein P, Grandpeix JY, Krinner G, Levan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model : climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813

    Article  Google Scholar 

  • Ivins E, James T (2005) Antarctic glacial isostatic adjustment: a new assessment. Antarct Sci 17(4):541–553

    Article  Google Scholar 

  • Jakobsson M, Gardner J, Vogt P, Mayer L, Armstrong A, Backman J, Brennan R, Calder B, Hall J, Kraft B (2005) Multibeam bathymetric and sediment profiler evidence for ice grounding on the Chukchi Borderland, Arctic Ocean. Quat Res 63:150–160

    Article  Google Scholar 

  • Jakobsson M, Polyak L, Edwards M, Kleman J, Coakley B (2008) Glacial geomorphology of the Central Arctic Ocean: the Chukchi Borderland and the Lomonosov Ridge. Earth Surf Proc Land 33(4):526–545

    Article  Google Scholar 

  • Kageyama M, Valdes P (2000) Impact of the North American ice-sheet orography on the Last Glacial Maximum eddies and snowfall. Geophys Res Lett 27(10):1515

    Article  Google Scholar 

  • Kageyama M, Valdes PJ, Ramstein G, Hewitt C, Wyputta U (1999) Northern Hemisphere storm tracks in present day and Last Glacial Maximum Climate Simulations: a comparison of the European PMIP models. J Clim 12:742–760

    Article  Google Scholar 

  • Kageyama M, Lane A, Abe-Ouchi A, Braconnot P, Cortijo E, Crucix M, de Vernal A, Guiot J, Hewitt C, Kitoh A, Kucera M, Marti O, Ohgaito R, Otto-Bliesner B, Peltier W, Rosell-Mele A, Vettoretti G, Weber S, Yum Y, Members MP (2006) Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO seasurface temperatures and pollen-based reconstructions. Quat Sci Rev 25:2082–2102

    Article  Google Scholar 

  • Kandiano E, Bauch H, Muller A (2004) Sea surface temperature variability in the North Atlantic during the last two glacial interglacial cycles: comparison of faunal, oxygen isotopic, and Mg/Ca-derived records. Palaeogeogr Palaeoclimatol 204(1–2):145–164

    Article  Google Scholar 

  • Kirst J, Schneider R, Muller P, von Storch I, Wefer G (1999) Late quaternary temperature variability in the Benguela current system derived from Alkenones. Quat Res 52(1):92–103

    Article  Google Scholar 

  • Krinner G (2003) Impact of lakes and wetlands on boreal climate. J Geophys Res 108(D16):4520

    Article  Google Scholar 

  • Krinner G, Genthon C (1999) Altitude dependence of the ice sheet surface climate. Geophys Res Lett 26:2227–2230

    Article  Google Scholar 

  • Krinner G, Mangerud J, Jakobsson M, Crucifix M, Ritz C, Svendsen J (2004) Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature 427:429–432

    Article  Google Scholar 

  • Krinner G, Boucher O, Balanski Y (2006) Ice-free glacial northern Asia due to dust deposition on snow. Clim Dyn 27(6):773–777

    Article  Google Scholar 

  • Kucera M, Rosell-Mele A, Schneider R, Waelbroeck C, Weinelt M (2005a) Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quat Sci Rev 24:813–819

    Article  Google Scholar 

  • Lambeck K, Purcell A, Johnston P, Nakada M, Yokoyama Y (2003) Water-load definition in the glacio-hydro-isostatic sea-level equation. Quat Sci Rev 22:309–318

    Article  Google Scholar 

  • Lambeck K, Purcell A, Funder S, Kjaer K, Larsen E, ans Möller P (2006) Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling. Boreas 35:539–575

    Article  Google Scholar 

  • Lea D, Pak D, Spero H (2000) Climate impact of late Quaternary Equatorial Pacific Sea surface temperature variations. Science 289(5485):1719–1724

    Article  Google Scholar 

  • Mahowald N, Kohfeld K, Hansson M, Balanski Y, Harrisson S, Prentice J, Schulz M, Rodhe H (1999) Dusts sources and deposition during the last glacial maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J Geophys Res 104(D13)

  • Mangerud J, Jakobsson M, Alexanderson H, Astakhov V, Clarke G, Henriksen M, Hjort C, Krinner G, Lunkka JP, Moller P, Murray A, Nikolskaya O, Saarnisto M, Svendsen J (2004) Ice-dammed lakes and rerouting of the drainage of northern eurasia during the last glaciation. Quat Sci Rev 23:1313–1322

    Article  Google Scholar 

  • Mashiotta TA, Spero HJ, Lea DW (1999) Glacial interglacial changes in Subantarctic sea surface temperature and d18O-water using foraminiferal Mg. Earth Planet Sci Lett 170(4):417–432

    Google Scholar 

  • Nurnberg D, Groeneveld J (2006) Pleistocene variability of the Subtropical Convergence at East Tasman Plateau: Evidence from planktonic foraminiferal Mg/Ca (ODP Site 1172A). Geochem Geophy Geosynth 7:984. doi:10.1029/2005GC000

    Google Scholar 

  • Ohmura A, Reeh N (1996) New precipitation and accumulation maps for Greenland. J Glaciol 125(37):140–148

    Google Scholar 

  • Pahnke K, Sachs J (2006) Sea surface temperatures of southern midlatitudes 0160 kyr B.P. Paleoceanography 21:191. doi:10.1029/2005PA001

    Article  Google Scholar 

  • Paul A, Schaefer-Neth C (2003) Modeling the water masses of the Atlantic Ocean at the Last Glacial Maximum. Paleoceanography 18(3):783 doi:10.1029/2002PA000

    Article  Google Scholar 

  • Pelejero C, ECalvo, Barrows T, Logan G, Deckker PD (2006) South Tasman Sea alkenone palaeothermometry over the last four glacial/interglacial cycles. Mar Geol 230(1–2):73–86

  • Peltier W (2004) Global glacial isostasy and the surface of the ice-age Earth: The REF140-5G (VM2) Model and GRACE. Annu Rev Earth Planet Sci 32:111–149

    Article  Google Scholar 

  • Petit J, Jouzel J, Raynaud D, Barkov N, Barnola J, Basile I, Bender M, Chapellaz J, Davis J, Delaygue G, Delmotte M, Kotlyakov V, Legrand M, Lipenkov V, Lorius C, Ppin L, Ritz C, Saltzman E, Stievenard M (2001) Ice core data for 420,000 year

  • Peyaud V (2006) Role of the Ice Sheet Dynamics in major climate changes. PhD thesis, Laboratoire de Glaciologie et de Géophysique de l’Environnement, Université Grenoble I

  • Peyaud V, Ritz C, Krinner G (2007) Modeling the Early Weichselian Eurasian Ice Sheets: role of ice shelves and influence of ice-dammed lakes. Clim Past 3:375–386

    Article  Google Scholar 

  • Polyak L, Edward M, Coakley B, Jakobsson M (2001) Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410:453–457

    Article  Google Scholar 

  • Ramstein G, Joussaume S (1995) Sensitivity experiments to sea surface temperatures, sea-ice extent and ice-sheet reconstruction for the Last Glacial Maximum. Ann Glaciol 21:343–347

    Google Scholar 

  • Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407

    Article  Google Scholar 

  • Rind D (2006) Components of the ice age circulation. J Geophys Res 2:31–42

    Google Scholar 

  • Ritz C, Rommalaere V, Dumas C (2001) Modeling the evolution of Antarctic ice sheet over the last 420,000 years: implications for altitude changes in the Vostok region. J Geophys Res 106(D23):31943–31964

    Article  Google Scholar 

  • Romanova V, Lohmann G, Grosfeld K (2005) Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Clim Past 92:4241–4281

    Google Scholar 

  • Romanova V, Lohmann G, Grosfeld K, Butzin M (2006) Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Quat Sci Rev 25:832–845

    Article  Google Scholar 

  • Ruddiman W, McIntyre A (1979) Warmth of the subpolar North Atlantic Ocean during Northern Hemisphere ice-sheet growth. Science 204:173–175

    Article  Google Scholar 

  • Schaefer G, Rodger J, Hayward B, Kennett J, Sabaa A, Scott G (2005) Planktic foraminiferal and sea surface temperature record during the last 1 Myr across the Subtropical Front, Southwest Pacific. Mar Micropaleontol 54(3-4):191–212

    Article  Google Scholar 

  • Schneider R (1999) Atlantic Alkenone sea-surface temperature records. In: De Abrantes F, Mix AC (ed) Reconstructing ocean history: a window into the future. Springer, Berlin

    Google Scholar 

  • Schneider R, Muller P, Ruhland G (1995) Late quaternary surface circulation in the East Equatorial South Atlantic: evidence from Alkenone sea surface temperatures. Paleoceanography 10(2):197–219

    Article  Google Scholar 

  • Schneider R, Muller P, Ruhland G, Meinecke G, Schmidt H, Wefer G (1996) Late quaternary surface temperatures and productivity in the East Equatorial South Atlantic: response to changes in trade/monsoon wind forcing and surface water advection. In: Wefer G et al. (ed) The South-Atlantic: present and past circulation. Springer, Berlin

    Google Scholar 

  • Shackleton N, Berger A, Peltier W (1990) An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans R Soc Edinb Earth sci 81:251–261

    Google Scholar 

  • Shin SI, Liu Z, Otto-Bliesner B, Brady EC, Kutzbach JE, Harrison SP (2003) A simulation of the last glacial maximum climate using the ncar-ccsm. Clim Dyn 20(2–3):127–151

    Google Scholar 

  • Siegert MJ, Marsiat I (2001) Numerical reconstructions of LGM climate across the Eurasian Arctic. Quat Sci Rev 20(16):1595–1605

    Article  Google Scholar 

  • Simmonds I, Wu X (1993) Cyclone behaviour response to changes in winter Southern Hemisphere sea-ice concentration. J Clim 119:1121–1148

    Google Scholar 

  • Spahni R, Chappellaz J, Stocker T, Loulergue L, Hausammann G, Kyawamura G, Flckiger J, Schwander J, Raynaud D, Masson-Delmotte V, Jouzel J (2005) Epica Dome C CH4 data to 650 kya BP

  • Stocker T (1998) The seesaw effect. Science 282:61–62

    Article  Google Scholar 

  • Svendsen J, Alexanderson H, Astakhov V, Demidov I, Dowdeswell J, Funder S, Gataullin V, Henriksen M, Hjort C, Houmark-Nielsen M, Hubberten H, Ingolfsson O, Jakobsson M, Kjaer K, Larsen E, Lokrantz H, Lunkka J, Lysa A, Mangerud J, Matiouchkov A, Murray A, Moller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert C, Siegert M, Spielhagen R, Stein R (2004) Late Quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23(11–13):1229–1271

    Article  Google Scholar 

  • Toracinta R, Oglesby R, Bromwitch D (2004) Atmospheric Response to Modified CLIMAP Ocean Boundary Conditions during the Last Glacial Maximum. J Clim 17(3):504–522

    Google Scholar 

  • Villanueva J, Flores J, Grimalt J (2002) A detailed comparison of the Uk’37 and coccolith records over the past 290 kyears: implications to the alkenone paleotemperature method. Org Geochem 33(8):897–905

    Article  Google Scholar 

  • Waelbroeck C, Paul A, Kucera M, Rosell-Melé A, Weinelt M, Schneider R, Mix AC, Abelmann A, Armand L, Bard E, Barker S, Barrows TT, Benway H, Cacho I, Chen MT, Cortijo E, Crosta X, de Vernal A, Dokken T, Duprat J, Eldereld H, Eynaud F, Gersonde R, Hayes A, Henry M, Hillaire-Marcel C, Huang CC, Jansen E, Juggins S, Kallel N, Kiefer T, Kienast M, Labeyrie L, Leclaire H, Londeix L, Mangin S, Matthiessen J, Marret F, Meland M, Morey AE, Mulitza S, Pfaumann U, Pisias NG, Radi T, Rochon A, Rohling EJ, Sbaf L, Schfer-Neth C, Solignac S, Spero H, Tachikawa K, Turon JL (2009) Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum, MARGO Project Members. Nat Geosci 2:127–332

    Article  Google Scholar 

  • Wei G, Deng W, Liu Y, Li X (2007) High-resolution sea surface temperature records derived from foraminiferal Mg/Ca ratios during the last 260 ka in the northern South China Sea. Palaeogeogr Palaeoclimatol 250(1–4):126–138

    Article  Google Scholar 

  • Winckler G, Anderson R, Fleisher M, McGee D, Mahowald N (2008) Covariant glacial–interglacial dust fluxes in the Equatorial Pacific and Antarctica. Science 320:93–96

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Myriam Khodri, Antje Voelker, Catherine Ritz and Thomas Crowley for their useful contributions. The authors acknowledge support by the Agence Nationale de la Recherche (project IDEGLACE), the Région Rhône Alpes (programme Explora’Doc) and the Ministère des Affaires Étrangères Français and The Bert Bolin Centre for Climate Research (Stockholm University) for their support. The climate simulations were carried out at IDRIS/CNRS and on the Mirage scientific computing plateform in Grenoble (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Colleoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colleoni, F., Liakka, J., Krinner, G. et al. The sensitivity of the Late Saalian (140 ka) and LGM (21 ka) Eurasian ice sheets to sea surface conditions. Clim Dyn 37, 531–553 (2011). https://doi.org/10.1007/s00382-010-0870-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0870-7

Keywords

Navigation