Skip to main content
Log in

Visualization and Characterization of Heterogeneous Water Flow in Double-Porosity Media by Means of X-ray Computed Tomography

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Three-dimensional visualization of dynamic water transport process in soil by computed tomography (CT) technique is still limited by its low temporal resolution. In order to monitor dynamically water transport in soil, a compromise has to be found between water flow velocity and CT acquisition time. Furthermore, an efficient image analysis method is necessary. In this work, we followed the water transport in three dimensions by CT imaging across a double-porosity media constituted of two distinct materials, i.e. sand and porous clay spheres. The CT acquisition parameters were adjusted to the water pore velocity so that we succeeded to register the water front displacement per time range of 25 min. We also used the image subtraction method to extract water distribution evolution with time with a space resolution of \(6\times 10^{-3}\hbox { cm}\). Both time and space resolution are relatively high compared with other dynamic studies. The water content profiles showed that the clay spheres remained in their dry state during water infiltration, while the water transport only occurred in the sand matrix. These results are consistent with macroscopic experiments. The water front visualized by CT showed a non-symmetrical shape which was related to water transfer in non-equilibrium as shown by column displacement experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhtar, M.S., Stüben, D., Norra, S., Memon, M.: Soil structure and flow rate-controlled molybdate, arsenate and chromium(III) transport through field columns. Geoderma 161(3–4), 126–137 (2011)

    Article  Google Scholar 

  • Akin, S., Schembre, J.M., Bhat, S.K., Kovscek, A.R.: Spontaneous imbibition characteristics of diatomite. J. Pet. Sci. Eng. 25(3–4), 149–165 (2000)

    Article  Google Scholar 

  • Angulo-Jaramillo, R., Vandervaere, J.P., Roulier, S., Thony, J.L., Gaudet, J.P., Vauclin, M.: Field measurement of soil surface hydraulic properties by disc and ring infiltrometers—a review and recent developments. Soil Till. Res. 55(1–2), 1–29 (2000)

    Article  Google Scholar 

  • Carminati, A., Kaestner, A., Ippisch, O., Koliji, A., Lehmann, P., Hassanein, R., Vontobel, P., Lehmann, E., Laloui, L., Vulliet, L., Flühler, H.: Water flow between soil aggregates. Transp. Porous Med. 68(2), 219–236 (2007)

    Article  Google Scholar 

  • Carminati, A., Kaestner, A., Lehmann, P., Flühler, H.: Unsaturated water flow across soil aggregate contacts. Adv. Water Resour. 31(9), 1221–1232 (2008)

    Article  Google Scholar 

  • Dal Ferro, N., Delmas, P., Duwig, C., Simonetti, G., Morari, F.: Coupling X-ray microtomography and mercury intrusion porosimetry to quantify aggregate structures of a cambisol under different fertilisation treatments. Soil Till. Res. 119, 13–21 (2012)

    Article  Google Scholar 

  • Desaunay, A.: Etude et modélisation de la biosorption des métaux par les bactéries. Application au transfert du cadmium et du zinc, seuls ou en mélange, par Escherichia coli et Cupriavidus metallidurans en colonnes de sable d’Hostun. PhD of Joseph Fourier university (2011)

  • DiCarlo, D.A., Seale, L.D., Ham, K., Willson, C.S.: Tomographic measurements of pore filling at infiltration fronts. Adv. Water Resour. 33(4), 485–492 (2010)

    Article  Google Scholar 

  • Elyeznasni, N., Sellami, F., Pot, V., Benoit, P., Vieublé-Gonod, L., Young, I., Peth, S.: Exploration of soil micromorphology to identify coarse-sized OM assemblages in X-ray CT images of undisturbed cultivated soil cores. Geoderma 179, 38–45 (2012)

    Article  Google Scholar 

  • Esser, H.G., Carminati, A., Vontobel, P., Lehmann, E.H., Oswald, S.E.: Neutron radiography and tomography of water distribution in the root zone. J. Plant Nutr. Soil Sci. 173(5), 757–764 (2010)

    Article  Google Scholar 

  • Heindel, T.J., Gray, J.N., Jensen, T.C.: An X-ray system for visualizing fluid flows. Flow Meas. Instrum. 19(2), 67–78 (2008)

    Article  Google Scholar 

  • Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd edn. Springer Publishing Company Inc., New York (2009)

    Book  Google Scholar 

  • Holtham, D.A.L., Matthews, G.P., Scholefield, D.S.: Measurement and simulation of void structure and hydraulic changes caused by root-induced soil structuring under white clover compared to ryegrass. Geoderma 142(1–2), 142–151 (2007)

    Article  Google Scholar 

  • Hopmans, J.W., Vogel, T., Koblik, P.D.: X-ray tomography of soil–water distribution in one-step outflow experiments. Soil Sci. Soc. Am. J. 56(2), 355–362 (1992)

    Article  Google Scholar 

  • Kneafsey, T.J., Seol, Y., Gupta, A., Tomutsa, L.: Permeability of laboratory-formed methane-hydrate-bearing sand: measurements and observations using X-ray computed tomography. SPE J. 16(1), 78–94 (2011)

    Article  Google Scholar 

  • Lewandowska, J., Szymkiewicz, A., Burzynski, K., Vauclin, M.: Modeling of unsaturated water flow in double-porosity soils by the homogenization approach. Adv. Water Resour. 27(3), 283–296 (2004)

    Article  Google Scholar 

  • Lewandowska, J., Szymkiewicz, A., Auriault, J.: Upscaling of Richards’ equation for soils containing highly conductive inclusions. Adv. Water Resour. 28(11), 1159–1170 (2005)

  • Lewandowska, J., Szymkiewicz, A., Gorczewska, W., Vauclin, M.: Infiltration in a double-porosity medium: experiments and comparison with a theoretical model. Water Resour. Res. 41(2), W02022 (2005bis)

  • Lewandowska, J., Tran Ngoc, T.D., Vauclin, M., Bertin, H.: Water drainage in double-porosity soils: experiments and micro–macro modeling. J. Geotech. Geoenviron. 134(2), 231–243 (2008)

    Article  Google Scholar 

  • Lugato, E., Morari, F., Nardi, S., Berti, A., Giardini, L.: Relationship between aggregate pore size distribution and organic–humic carbon in contrasting soils. Soil Till. Res. 103(1), 153–157 (2009)

    Article  Google Scholar 

  • Luo, L., Lin, H., Li, S.: Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography. J. Hydrol. 393, 53–64 (2010)

    Article  Google Scholar 

  • Markowicz, A.A.: X-ray physics. In: Van Grieken, R.E., Markowicz, A.A. (eds.) Handbook of X-Ray Spectrometry, pp. 1–28. Marcel Dekker, New York (1993)

    Google Scholar 

  • Maruyama, T., Tada, A., Iwama, K., Horino, H.: Direct observation of soil water movement through soil macropores using soft X-rays and stereographing. Soil Sci. 168(2), 119–127 (2003)

    Article  Google Scholar 

  • Munkholm, L.J., Heck, R.J., Deen, B.: Soil pore characteristics assessed from X-ray micro-Cf derived images and correlations to soil friability. Geoderma 181, 22–29 (2012)

    Article  Google Scholar 

  • Sammartino, S., Michel, E., Capowiez, Y.: A novel method to visualize and characterize preferential flow in undisturbed soil cores by using multislice helical CT. Vadose Zone J. (2012). doi:10.2136/vzj2011.0100

  • Sato, T., Tanahashi, H., Loaiciga, H.A.: Solute dispersion in a variably saturated sand. Water Resour. Res. 39(6), 1155–1162 (2003)

    Google Scholar 

  • Schjonning, P., Iversen, B.V., Munkholm, L.J., Labouriau, R., Jacobsen, O.H.: Pore characteristics and hydraulic properties of a sandy loam supplied for a century with either animal manure or mineral fertilizers. Soil Use Manage. 21(3), 265–275 (2005)

    Article  Google Scholar 

  • Schaap, J.D., Lehmann, P., Kaestner, A., Vontobel, P., Hassanein, R., Frei, G., de Rooij, G.H., Lehmann, E., Flühler, H.: Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography. Adv. Water Resour. 31(9), 1233–1241 (2008)

    Article  Google Scholar 

  • Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)

    Article  Google Scholar 

  • Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando (1982)

    Google Scholar 

  • Sleutel, S., Cnudde, V., Masschaele, B., Vlassenbroek, J., Dierick, M., Van Hoorebeke, L., Jacobs, P., De Neve, S.: Comparison of different nano- and micro-focus X-ray computed tomography set-ups for the visualization of the soil microstructure and soil organic matter. Comput. Geosci. 34(8), 931–938 (2008)

    Article  Google Scholar 

  • Szymkiewicz, A., Lewandowska, J., Angulo-Jaramillo, R., Butlanska, J.: Two-scale modeling of unsaturated water flow in a double-porosity medium under axisymmetric conditions. Can. Geotech. J. 45(2), 238–251 (2008)

    Article  Google Scholar 

  • Szymkiewicz, A., Lewandowska, J.: Micromechanical approach to unsaturated water flow in structured geomaterials by two-scale computations. Acta Geotech. 3(1), 37–47 (2008)

    Article  Google Scholar 

  • Toride, N., Leij, F.J., van Genuchten, M.Th.: The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. Version 2.1. U.S. Salinity Laboratory, Riverside, California (1999)

  • Toride, N., Inoue, M., Leij, F.J.: Hydrodynamic dispersion in an unsaturated dune sand. Soil Sci. Soc. Am. J. 67, 703–712 (2003)

    Article  Google Scholar 

  • Tran Ngoc, T.D.: Transport de solutés dans un milieu à double-porosité non saturé. Modélisation par homogénéisation & applications. PhD of Joseph Fourier university (2008)

  • Vasin, M., Lehmann, P., Kaestner, A., Hassanein, R., Nowak, W., Helmig, R., Neuweiler, I.: Drainage in heterogeneous sand columns with different geometric structures. Adv. Water Resour. 31(9), 1205–1220 (2008)

    Article  Google Scholar 

  • Vogel, H.J., Roth, K.: Moving through scales and flow and transport in soil. J. Hydrol. 272(1–4), 95–106 (2003)

    Article  Google Scholar 

  • Wildenschild, D., Hopmans, J.W., Rivers, M.L., Kent, A.J.R.: Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography. Vadose Zone J. 4(1), 112–126 (2005)

    Article  Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Article  Google Scholar 

  • Withjack, E.M.: Computed tomography for rock-property determination and fluid-flow visualization. Soc. Pet. Eng. Form. Eval. 3, 696–704 (1988)

    Google Scholar 

  • Xu, K., Daian, J.F., Quenard, D.: Multiscale structures to describe porous media. Part II: transport properties and application to test materials. Transp. Porous Med. 26(3), 319–338 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

This project and post-doc scholarship for Z. Peng have been funded by a specific grant awarded by Grenoble Institute of Technology. We thank J.F. Daian for the help in using XDQ software. This project has also received partial funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 645717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Duwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Duwig, C., Delmas, P. et al. Visualization and Characterization of Heterogeneous Water Flow in Double-Porosity Media by Means of X-ray Computed Tomography. Transp Porous Med 110, 543–564 (2015). https://doi.org/10.1007/s11242-015-0572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0572-z

Keywords

Navigation