Skip to main content
Log in

(Methyl)Mercury, Arsenic, and Lead Contamination of the World’s Largest Wastewater Irrigation System: the Mezquital Valley (Hidalgo State—Mexico)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In the Mezquital valley, untreated wastewater (45 m3 s−1) from Mexico City is used for the irrigation of around 900 km2 of agricultural soil. High concentrations of metals including methylmercury (3.8 ± 2.5 ng l−1) and lead (0.16 ± 0.05 mg l−1) were measured in anoxic wastewater canals. Downstream, dissolved, and particulate polymetallic (Hg, Pb, Cr…) concentrations decreased by factors 10 to 1,000 in the Tula River (which received a mix of fresh and wastewater) due to the dilution and oxidation of surface water, and to the decrease of contaminants concentration in wastewater downstream irrigated soils. However, dissolved and particulate methylmercury concentrations (0.06 to 0.33 ng l−1 and 1.6 to 4.5 μg kg−1, respectively) remained elevated in comparison to other natural hydrosystems. The monitoring of an irrigation event and the distribution of metals in a soil profile irrigated for more than 80 years showed that metals were retained in the draining tilled layer. The oxic conditions and slightly acidic pH (~6.5) in this layer were found favorable for metal adsorption and co-precipitation with redox-sensitive elements (Fe, Mn) and suggestively for mercury demethylation. In the downstream Tula River and groundwater, almost all metallic concentrations remained below guideline thresholds. Only, dissolved As and Pb concentrations remained two to five times above thresholds for drinking water, highlighting a potential health risk for approximately 500,000 people who use groundwater as water supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balogh, S. J., & Nollet, Y. H. (2008). Methylmercury input to the Mississippi River from a large metropolitan wastewater treatment plant. Science of the Total Environment, 406(1–2), 145–153.

    Article  CAS  Google Scholar 

  • Balogh, S. J., Nollet, Y. H., & Offerman, H. J. (2005). A comparison of total mercury and methylmercury export from various Minnesota watersheds. Science of the Total Environment, 340(1–3), 261–270.

    Article  CAS  Google Scholar 

  • Banning, A., Cardona, A., & Rüde, T. R. (2012). Uranium and arsenic dynamics in volcano-sedimentary basins—an exemplary study in north-central Mexico. Applied Geochemistry, 27(11), 2160–2172.

    Article  CAS  Google Scholar 

  • Benoit, J. M., Gilmour, C. C., & Mason, R. P. (2001). The influence of sulfide on solid phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3). Environmental Science & Technology, 35(1), 127–132.

    Article  CAS  Google Scholar 

  • Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environmental Science & Technology, 35, 2621–2626.

    Article  CAS  Google Scholar 

  • Bloom, N. S., & Fitzgerald, W. F. (1988). Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapor atomic fluorescence detection. Analytica Chimica Acta, 208, 151–161.

    Article  CAS  Google Scholar 

  • Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479, 233–248.

    Article  CAS  Google Scholar 

  • Boudou, A. (2002). Fish contamination by metals: bioaccumulation and trophic transfer mechanisms. Revue de Médecine Vétérinaire, 153, 437.

    Google Scholar 

  • Boudou, A., Maury-Brachet, R., Coquery, M., Durrieu, G., & Cossa, D. (2005). Synergic effect of gold mining and damming on mercury contamination in fish. Environmental Science & Technology, 39(8), 2448–2454.

    Article  CAS  Google Scholar 

  • Cajuste, L. J., Carrillo, R., Cota, E., & Laird, R. J. (1991). The distribution of metals from waste-water in the mexican valley of Mezquital. Water, Air, & Soil Pollution, 57–8, 763–771.

    Article  Google Scholar 

  • Carrillo, R., & Cajuste, L. J. (1995). Behavior of trace-metals in soils of Hidalgo, Mexico. Journal of Environmental Science and Health, 30, 143–155.

    Google Scholar 

  • Charlet, L., Chapron, Y., Faller, P., Kirsch, R., Stone, A. T., & Baveye, P. C. (2012). Neurodegenerative diseases and exposure to the environmental metals Mn, Pb, and Hg. Coordination Chemistry Reviews, 256(19–20), 2147–2163.

    Article  CAS  Google Scholar 

  • Compeau, G. C., & Bartha, R. (1985). Sulfate-reducing bacteria—principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2), 498–502.

    CAS  Google Scholar 

  • Cossa, D., & Gobeil, C. (2000). Mercury speciation in the Lower St. Lawrence estuary. Canadian Journal of Fisheries and Aquatic Sciences, 57, 138–147.

    Article  CAS  Google Scholar 

  • Cossa, D., Averty, B., & Pirrone, N. (2009). The origin of methylmercury in open Mediterranean waters. Limnology and Oceanography, 54(3), 837–844.

    Article  CAS  Google Scholar 

  • Day, P. R. (1965). Particle fraction and particle size analysis. In C. A. Black (Ed.), Methods of soil analysis, part 1. Agronomy (Vol. 9, pp. 545–567). Madison: Am. Soc. Agronomy.

    Google Scholar 

  • de Velasquez, M. T. O., Manero, O., Cardoso, J., & Martenez, G. (1998). New polymeric coagulants tested in water and wastewater. Environmental Technology, 19(3), 323–329.

    Article  Google Scholar 

  • DFID. (1998). Impact of wastewater reuse on groundwater in the Mezquital Valley, Hidalgo State, Mexico. In CNA, & BGS (Ed.), Technical report (London School of Hygiene and Tropical Medicine ed). Mexico: University of Birmingham: Comision Nacional del Agua British Geological Survey.

    Google Scholar 

  • DOF. (2003). NOM 001-SEMARNATECOL-2003. Establece los limites maximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales (Maximum allowable limits of pollutants of wastewater discharges in water bodies national goods (water bodies and soil)). In Norma Oficial Mexicana. Mexico: Diario Oficial de la Federacion. in Spanish.

    Google Scholar 

  • Drechsel, P., & Evans, A. E. V. (2010). Wastewater use in irrigated agriculture. Irrigation and Drainage Systems, 24(1–2), 1–3.

    Article  Google Scholar 

  • Drott, A., Lambertsson, L., Bjorn, E., & Skyllberg, U. (2008). Potential demethylation rate determinations in relation to concentrations of MeHg, Hg and pore water speciation of MeHg in contaminated sediments. Marine Chemistry, 112(1–2), 93–101.

    Article  CAS  Google Scholar 

  • E.U. (2009). European communities environmental objectives (surface waters) regulations 2009. Dublin: European Communities.

  • Feigin, A., Ravina, I., & Shalhevet, J. (1991). Irrigation with treated sewage effluent. Management for environmental protection (Advanced series in agricultural sciences, Vol. 17). Berlin; New York: Springer.

    Book  Google Scholar 

  • Feng, X., & Qiu, G. (2008). Mercury pollution in Guizhou, Southwestern China—an overview. Science of the Total Environment, 400(1–3), 227–237.

    Article  CAS  Google Scholar 

  • Feng, X., Qiu, G., Wang, S., & Shang, L. (2003). Distribution and speciation of mercury in surface waters in mercury mining areas in Wanshan, Southwestern China. Journal de Physique IV, 107, 455–458.

    Article  CAS  Google Scholar 

  • Filippelli, M., Baldi, F., Brinckman, F. E., & Olson, G. J. (1992). Methylmercury determination as volatile methylmercury hydride by purge and trap gas chromatography in line with Fourier transform infrared spectroscopy. Environmental Science & Technology, 26(7), 1457–1460.

    Article  CAS  Google Scholar 

  • Fitzgerald, W. F., & Clarkson, T. W. (1991). Mercury and monomethylmercury: present and future concerns. Environmental Health Perspectives, 96, 159–166.

    Article  CAS  Google Scholar 

  • Fleming, E. J., Mack, E. E., Green, P. G., & Douglas, C. N. (2006). Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology, 72(1), 457–464.

    Article  CAS  Google Scholar 

  • Flores, L., Blas, G., Hernandez, G., & Alcala, R. (1997). Distribution and sequential extraction of some heavy metals from soils irrigated with watsewater from Mexico City. Water, Air, & Soil Pollution, 98, 105–117.

    CAS  Google Scholar 

  • Friedel, J. K., Langer, T., Siebe, C., & Stahr, K. (2000). Effects of long-term waste water irrigation on soil organic matter, soil microbial biomass and its activities in central Mexico. Biology and Fertility of Soils, 31, 414–421.

    Article  Google Scholar 

  • Gallegos, E., Warren, A., Robles, E., Campoy, E., Sainz, M. G., Bonilla, P., et al. (1999). The effect of waste water irrigation on groundwater quality in Mexico. Water Science and Technology, 42(2), 45–52.

    Article  Google Scholar 

  • García Bravo, A., Cosio, C., Chevalley, P.-A., Zopfi, J., Amouroux, D., Spangenberg, J., Ungureanu, V.-G., & Dominik, J. (2014). Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. Water Research, 49(1), 391–405.

    Article  Google Scholar 

  • García, L., Biswas, A. K., Braga, B., Tortajada, C., & Rodriguez, D. J. (2006). Water Quality Management in the Americas. In A. K. Biswas, & C. Tortajada (Eds.), Water Quality Issues in Latin America (pp. 1–15): Springer.

  • Gbondo-Tugbawa, S. S., McAlear, J. A., Driscoll, C. T., & Sharpe, C. W. (2010). Total and methyl mercury transformations and mass loadings within a wastewater treatment plant and the impact of the effluent discharge to an alkaline hypereutrophic lake. Water Research, 44(9), 2863–2875.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., & Bloom, N. S. (1995). A case study of mercury and methylmercury dynamics in a Hg-contaminated municipal wastewater treatment plant. Water, Air, & Soil Pollution, 80(1), 799–803.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., Riedel, G. S., Ederington, M. C., Bell, J. T., Benoit, J. M., Gill, G. A., et al. (1998). Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry, 40(2–3), 327–345.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., Johs, A., Hurt, R. A., Bailey, K. L., & Elias, D. A. (2013). Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology, 47, 11810–11820.

    Article  CAS  Google Scholar 

  • Grafe, M., Eick, M. J., Grossi, P. R., & Saunders, A. M. (2002). Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. Journal of Environmental Quality, 31(4), 1115–1123.

    Article  CAS  Google Scholar 

  • Guédron, S., Grangeon, S., Lanson, B., & Grimaldi, M. (2009). Mercury speciation in a tropical soil association; consequence of gold mining on Hg distribution in French Guiana. Geoderma, 153, 331–346.

    Article  Google Scholar 

  • Guédron, S., Grimaldi, M., Grimaldi, C., Cossa, D., Tisserand, D., & Charlet, L. (2011). Amazonian former gold mined soils as a source of methylmercury: evidence from a small scale watershed in French Guiana. Water Research, 45(8), 2659–2669.

    Article  Google Scholar 

  • Guedron, S., Huguet, L., Vignati, D. A. L., Liu, B., Gimbert, F., Ferrari, B. J. D., et al. (2012). Tidal cycling of mercury and methylmercury between sediments and water column in the Venice Lagoon (Italy). Marine Chemistry, 130–131, 1–11.

    Article  Google Scholar 

  • Guédron, S., Grangeon, S., Jouravel, G., Charlet, L., & Sarret, G. (2013). Atmospheric mercury incorporation in soils of an area impacted by a chlor-alkali plant (Grenoble, France): contribution of canopy uptake. Science of the Total Environment, 445–446(0), 356–364.

    Article  Google Scholar 

  • Gutiérrez-Ruíz, M., Siebe, C., & Sommer, I. (1994) Environmental Aspects of Land Application of Wastewater from Mexico City Metropolitan Area: A Bibliographical Review and Analysis of Implications. In 15th World Congress of Soil Sci., Acapulco, Mexico, 3, 318–330.

  • Han, S., Obraztsova, A., Pretto, P., Deheyn, D. D., Gieskes, J., & Tebo, B. M. (2008). Sulfide and iron control on mercury speciation in anoxic estuarine sediment slurries. Marine Chemistry, 111(3–4), 214–220.

    Article  CAS  Google Scholar 

  • Harvey, J. W., Chambers, R. M., & Hoelscher, J. R. (1995). Preferential flow and porewater solutes in segregation of wetland sediment. Estuaries, 18(4), 568–578.

    Article  CAS  Google Scholar 

  • Hermann, R., & Neumann-Mahlkau, P. (1985). The mobility of zinc, cadmium, copper, lead, iron and arsenic in ground water as a function of redox potential and pH. Science of the Total Environment, 43(1–2), 1–12.

    Article  CAS  Google Scholar 

  • Herre, A., Siebe, C., & Kaupenjohann, M. (2004). Effect of irrigation water quality on organic matter, Cd and Cu mobility in soils of Central Mexico. Water Science and Technology, 50(2), 277–284.

    CAS  Google Scholar 

  • Hochella, M. F., Jr., Moore, J. N., Putnis, C. V., Putnis, A., Kasama, T., & Eberl, D. D. (2005). Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: implications for metal transport and bioavailability. Geochimica et Cosmochimica Acta, 69(7), 1651–1663.

    Article  CAS  Google Scholar 

  • Horvat, M., Nolde, N., Fajon, V., Jereb, V., Logar, M., Lojen, S., et al. (2003). Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Science of the Total Environment, 304(1–3), 231–256.

    Article  CAS  Google Scholar 

  • Huang, P. M., Bollag, J. M., & Senesi, N. (2002). Interactions between soil particles and microorganisms: impact on the terrestrial ecosystem (IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, Vol. 8). New York: John Wiley and Sons.

    Google Scholar 

  • Huang, X., Liao, X., & Shi, B. (2009). Adsorption removal of phosphate in industrial wastewater by using metal-loaded skin split waste. Journal of Hazardous Materials, 166(2–3), 1261–1265.

    Article  CAS  Google Scholar 

  • INEGI (2013). Censo de Población y Vivienda 2010. Instituto Nacional de Estadística y Geografía. http://www.inegi.org.mx/ Accessed 11 Oct 2013.

  • IUSS. (2007). World Reference Base for Soil Resources, first actualization 2007. In Food and Agriculture Organization of the United Nations (Ed.), Reports on world soil resources (Vol. 103). Rome: FAO.

    Google Scholar 

  • Jain, C. K., & Ali, I. (2000). Arsenic: occurrence, toxicity and speciation techniques. Water Research, 34(17), 4304–4312.

    Article  CAS  Google Scholar 

  • Jamali, M. K., Kazi, T. G., Afridi, H. I., Arain, M. B., Jalbani, N., & Memon, A. R. (2007). Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 42(5), 649–659.

    Article  CAS  Google Scholar 

  • Jiménez, B., & Chavez, A. (1997). Treatment of Mexico City wastewater for irrigation purposes. Environmental Technology, 18, 721–730.

    Article  Google Scholar 

  • Jiménez, B., & Chávez, A. (2002). Low cost technology for reliable use of Mexico City’s wastewater for agricultural irrigation. Environmental Technology, 9, 84–107.

    Google Scholar 

  • Jiménez, B., & Chavez, A. (2004). Quality assessment of an aquifer recharged with wastewater for its potential use as drinking source: “El Mezquital Valley” case. Water Science and Technology, 50(2), 269–276.

    Google Scholar 

  • Jiménez, B., Chávez, A., Barrios, E., & Pérez, R. (2000). Impact and potential of reused water in the Mezquital Valley. Water 21 IWA, 6, 34–36.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. 3rd Edn. Boca Raton (USA): CRC Press 2000.

  • Kerin, E. J., Gilmour, C. C., Roden, E., Suzuki, M. T., Coates, J. D., & Mason, R. P. (2006). Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology, 72(12), 7919–7921.

    Article  CAS  Google Scholar 

  • Kim, K.-W., Bang, S., Zhu, Y., Meharg, A. A., & Bhattacharya, P. (2009). Arsenic geochemistry, transport mechanism in the soil-plant system, human and animal health issues. Environment International, 35(3), 453–454.

    Article  Google Scholar 

  • Liu, B., Yan, H., Wang, C., Li, Q., Guédron, S., Spangenberg, J. E., et al. (2012). Insights into low fish mercury bioaccumulation in a mercury-contaminated reservoir, Guizhou, China. Environmental Pollution, 160, 109–117.

    Article  CAS  Google Scholar 

  • Lucho-Constantino, C. A., Prieto-García, F., Del Razo, L. M., Rodriguez-Vázquez, R., & Poggi-Varaldo, H. M. (2005). Chemical fractionation of boron and heavy metals in soils irrigated with wastewater in Central Mexico. Agriculture, Ecosystems & Environment, 108, 57–71.

    Article  CAS  Google Scholar 

  • Luther, G., & Rickard, D. (2005). Metal sulfide cluster complexes and their biogeochemical importance in the environment. Journal of Nanoparticle Research, 7(4), 389–407.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201–235.

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale, M., Agee, J., McGowan, C., Oremland, R. S., Thomas, M., Krabbenhoft, D., et al. (2000). Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environmental Science & Technology, 34(23), 4908–4916.

    Article  CAS  Google Scholar 

  • Mason, R. P., & Sullivan, K. A. (1998). Mercury and methylmercury transport through an urban watershed. Water Research, 32(2), 321–330.

    Article  CAS  Google Scholar 

  • Mason, R. P., Reinfelder, J. R., & Morel, F. M. M. (1995). Bioaccumulation of mercury and methylmercury. Water, Air, & Soil Pollution, 80, 915–921.

    Article  CAS  Google Scholar 

  • Mason, R. P., Laporte, J. M., & Andres, S. (2000). Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Archives of Environmental Contamination and Toxicology, 38(3), 283–297.

    Article  CAS  Google Scholar 

  • Mason, R. P., Heyes, D., & Sveinsdottir, A. (2006). Methylmercury concentrations in fish from tidal waters of the Chesapeake Bay. Archives of Environmental Contamination and Toxicology, 51(3), 425–437.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(12), 134–139.

    Article  CAS  Google Scholar 

  • Oliveira, A. d. S., Bocio, A., Trevilato, T. M. B., Takayanagui, A. M. M., Doming, J. L., & Segura-Munoz, S. I. (2007). Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant. Environmental Science and Pollution Research, 14(7), 483–489.

    Article  CAS  Google Scholar 

  • Oremland, R. S., Culberstone, C. W., & Winfrey, M. R. (1991). Methylmercury decomposition in sediments and bacterial clusters: involvement of methanogens and sulfate reducers in oxidative demethylation. Applied and Environmental Microbiology, 57(1), 130–137.

    CAS  Google Scholar 

  • Parker, J. L., & Bloom, N. S. (2005). Preservation and storage techniques for low-level aqueous mercury speciation. Science of the Total Environment, 337(1–3), 253–263.

    Article  CAS  Google Scholar 

  • Polya, D., & Charlet, L. (2009). Rising arsenic risk? Nature Geoscience, 2, 383–384.

    Article  CAS  Google Scholar 

  • Ponce, R. A., & Bloom, N. S. (1991). Effect of pH on the bioaccumulation of low-level, dissolved methylmercury by rainbow-trout (oncorhynchus-Mykiss). Water, Air, & Soil Pollution, 56, 631–640.

    Article  CAS  Google Scholar 

  • Qadir, M., & Scott, C. A. (2010). Non-pathogenic trade-offs of wastewater irrigation. In P. Drechsel, C. A. Scott, & M. Redwood (Eds.), Wastewater Irrigation (pp. 101–126). London: International Water Management Institute (IWMI).

  • Qishlaqi, A., Moore, F., & Forghani, G. (2008). Impact of untreated wastewater irrigation on soils and crops in Shiraz suburban area, SW Iran. Environmental Monitoring and Assessment, 141(1–3), 257–273.

    Article  CAS  Google Scholar 

  • Roos-Barraclough, F., Givelet, N., Martinez-Cortizas, A., Goodsite, M. E., Biester, H., & Shotyk, W. (2002). An analytical protocol for determination of total mercury concentration in solid peat samples. Science of the Total Environment, 292, 129–139.

    Article  CAS  Google Scholar 

  • Ruffat, S. (Ed.). (2006). Mexico, au risque de son développement (Géoconfluences, Vol. Brève n°2). Lyon: ENS LSH.

    Google Scholar 

  • Schnitzer, M., & Kerndorff, H. (1981). Reactions of fulvic acid with metal ions. Water, Air, & Soil Pollution, 15, 97–108.

    Article  CAS  Google Scholar 

  • Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., & Kölling, M. (2005). Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnology and Oceanography: Methods, 3, 361–371.

    Article  Google Scholar 

  • Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environment International, 35(4), 743–759.

    Article  CAS  Google Scholar 

  • Siebe, C. (1994). Acumulación y disponibilidad de metales pesados en suelos regados con aguas residuales en el Distrito de Riego 03, Tula, Hidalgo. Revista Internacional de Contaminación Ambiental, 10, 15–21.

    CAS  Google Scholar 

  • Siebe, C. (1995). Heavy metal availability to plants in soils irrigated with wastewater from Mexico City. Water Science and Technology, 32(12), 29–34.

    Article  CAS  Google Scholar 

  • Siebe, C., & Cifuentes, E. (1995). Environmental impact of wastewater irrigation in central Mexico: an overview. International Journal of Environmental Health Research, 5, 161–173.

    Article  CAS  Google Scholar 

  • Siebe, C., & Fischer, W. R. (1996). Effect of long-term irrigation with untreated sewage effluents on soil properties and heavy metal adsorption of Leptosols and Vertisols in Central Mexico. Zeitschrift für Pflanzenernährung und Bodenkunde, 159(4), 357–364.

    Article  CAS  Google Scholar 

  • Siebe-Grabach, C. (1994). Accumulation, mobility, and availability of heavy metals in soils of central Mexico that were subjected to long-term irrigation with municipal wastewater. Stuttgart: University of Hohenheim.

    Google Scholar 

  • Simeoni, M. A., Batts, B. D., & McRae, C. (2003). Effect of groundwater fulvic acid on the adsorption of arsenate by ferrihydrite and gibbsite. Applied Geochemistry, 18(10), 1507–1515.

    Article  CAS  Google Scholar 

  • Solis, C., Andrade, E., Mireles, A., Reyes-Solis, I. E., Garcia-Calderon, N., Lagunas-Solar, M. C., et al. (2005). Distribution of heavy metals in plants cultivated with wastewater irrigated soils during different periods of time. Nuclear Instruments and Methods in Physics Research B, 241, 351–355.

    Article  CAS  Google Scholar 

  • Ullrich, S. M., Ilyushchenko, M. A., Tanton, T. W., & Uskov, G. A. (2007). Mercury contamination in the vicinity of a derelict chlor-alkali plant—part II: contamination of the aquatic and terrestrial food chain and potential risks to the local population. Science of the Total Environment, 381(1–3), 290–306.

    Article  CAS  Google Scholar 

  • USEPA. (2001). Water quality criterion for the protection of human health: methylmercury (p. 303). Washington, DC: Office of Science and Technology Office of Water U.S. Environmental Protection Agency. EPA-823-R-01-001.

    Google Scholar 

  • USEPA. (2009). National primary drinking water regulations (p. 6). Washington, DC: Office of Science and Technology Office of Water U.S. EPA 816-F-09-0004.

    Google Scholar 

  • Vaiopoulou, E., & Gikas, P. (2012). Effects of chromium on activated sludge and on the performance of wastewater treatment plants: a review. Water Research, 46(3), 549–570.

    Article  CAS  Google Scholar 

  • Vignati, D. A. L., Dominik, J., Beye, M. L., Pettine, M., & Ferrari, B. J. D. (2010). Chromium(VI) is more toxic than chromium(III) to freshwater algae: a paradigm to revise? Ecotoxicology and Environmental Safety, 73(5), 743–749.

    Article  CAS  Google Scholar 

  • Watras, C. (1992). Mercury and methylmercury in individual zooplankton: implications for bioaccumulation. Limnology and Oceanography, 37(6), 1313–1318.

    Article  Google Scholar 

  • Watras, C. J., Back, R. C., Halvorsen, S., Hudson, R. J. M., Morrison, K. A., & Wente, S. P. (1998). Bioaccumulation of mercury in pelagic freshwater food webs. Science of the Total Environment, 219(2–3), 183–208.

    Article  CAS  Google Scholar 

  • Webster, R. (2001). Statistics to support soil research and their presentation. European Journal of Soil Science, 52(2), 331–340.

    Article  CAS  Google Scholar 

  • WHO. (2006). World Health Organisation guidelines for the safe use of wasterwater excreta and greywater (Vol. 3). Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2011). In WHO (Ed.), Guidelines for drinking-water quality (Vol. Fourth edition, p. 564). Geneva: World Health organisation.

    Google Scholar 

  • Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environmental Pollution, 158(5), 1169–1181.

    Article  CAS  Google Scholar 

  • Yang, J. K., Song, K. H., Kim, B. K., Hong, S. C., Cho, D. E., & Chang, Y. Y. (2007). Arsenic removal by iron and manganese coated sand. Water Science and Technology, 56(7), 161–169.

    Article  CAS  Google Scholar 

  • Zhu, H., Yan, B., Cao, H., & Wang, L. (2012). Risk assessment for methylmercury in fish from the Songhua River, China: 30 years after mercury-containing wastewater outfalls were eliminated. Environmental Monitoring and Assessment, 184(1), 77–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was funded by the DGAPA-PAPIIT (IA100513) project, the CONACyT (CB 83767), and the IRD. The authors acknowledge the enthusiastic cooperation received from the Cornejo family from Las Palmas Ranch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Guédron.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S.I.1: Supplementary Fig. 1

Dissolved, particulate, and sediment Fe, Al, Zn, Pb, THg, MMHg, Cu, Ni, Cr, and As concentrations, pH, Eh, and grain size distribution along the irrigation network from two of the wastewater (black symbols) emissaries (LPC: Gran Canal del Desagüe and ESS: Emisor Profundo), the Endhó dam outlet (EDO), the Tula river (gray symbols) at Tezontepec (TT) and Mixquiahuala (TM) and groundwater (white symbols) sampled at re-emergences (CSS and SGR) or wells (LPA). (PDF 38 kb)

S.I.2: Supplementary figure 2

Variations with time of pH, Eh, dissolved element (DOC, Fe, Al, Cr, Zn, Pb, Cu, Ni, THg, MMHg, Mn, Se, and As) concentrations, during the irrigation event of May 2, 2011 at Las Palmas site, in surface waters (SW—inlet (empty symbols): waters from the irrigation canal and outlet (dotted symbols): runoff water from the field) and pore-water (PW—down triangles) sampled with rhizon samplers at the field outlet. (PDF 41 kb)

S.I.3: Supplementary figure 3

Soil Al, Zn, Cu, Ni, Ti, and Se concentrations obtain after aqua regia (black symbols), EDTA (gray symbols), and MQ (white symbols) extractions, for the Las Palmas soil profile (triangles) which has been irrigated with wastewater for almost 80 years and for the Santiago soil profile concentrations obtain after aqua regia (black symbols), EDTA (gray symbols) and MQ (white symbols) extractions, for the Las Palmas soil profile (triangles) which has been irrigated with wastewater for almost 80 years and for Santiago soil profile that has never received wastewater irrigation (under natural rain water). (PDF 33 kb)

S.I.4: Supplementary table 4

a) Major (Al, Ca, Fe, K, Mg, Mn, and Sr) and b) trace (As, Cr, Cu, Ni, Pb, Zn, and THg) elements concentrations measured in solid sediment samples after aqua regia digestion from the drilling at Las Palmas. (PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guédron, S., Duwig, C., Prado, B.L. et al. (Methyl)Mercury, Arsenic, and Lead Contamination of the World’s Largest Wastewater Irrigation System: the Mezquital Valley (Hidalgo State—Mexico). Water Air Soil Pollut 225, 2045 (2014). https://doi.org/10.1007/s11270-014-2045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2045-3

Keywords

Navigation