Skip to main content
Log in

Analysis of Boundary-Layer Statistical Properties at Dome C, Antarctica

  • Notes and Comments
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The atmospheric boundary layer over the Antarctic Plateau is unique on account of its isolated location and extreme stability. Here we investigate the characteristics of the boundary layer using wind and temperature measurements from a 45-m high tower located at Dome C. First, spectral analysis reveals that both fields have a scaling behaviour from 30 min to 10 days (spectral slope \(\beta \approx 2\)). Wind and temperature time series also show a multifractal behaviour. Therefore, it is possible to fit the moment-scaling function to the universal multifractal model and obtain multifractal parameters for temperature (\(\alpha \approx 1.51,\, C_1\approx 0.14\)) and wind speed (\(\alpha \approx 1.34, \, C_1\approx 0.13\)). The same analysis is repeated separately in winter and summer at six different heights. The \(\beta \) parameter shows a strong stratification with height especially in summer, implying that properties of turbulence change surprisingly rapidly from the ground to the top of the tower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • de Montera L, Barthès L, Mallet C, Golé P (2009) The effect of rain-no rain intermittency on the estimation of the universal multifractals model parameters. J Hydrometeor 10:493–506. doi:10.1175/2008JHM1040.1

  • Fabry F (1996) On the determination of scale ranges for precipitation fields. J Geophys Res 101:12,819–12,826. doi:10.1029/96JD00718

    Article  Google Scholar 

  • Fraedrich K, Larnder C (1993) Scaling regimes of composite rainfall time series. Tellus A 45(4):289–298

    Article  Google Scholar 

  • Gage KS, Nastrom GD (1986) Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft during GASP. J Atmos Sci 43:729–740. doi:10.1175/1520-0469

    Article  Google Scholar 

  • Genthon C, Town MS, Six D, Favier V, Argentini S, Pellegrini A (2010) Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. J Geophys Res Atmos 115:D05104. doi:10.1029/2009JD012741

    Article  Google Scholar 

  • Genthon C, Gallée H, Six D, Grigioni P, Pellegrini A (2013) Two years of atmospheric boundary layer observation on a 45-m tower at Dome C on the Antarctic plateau. J Geophys Res Atmos 118:3218–3232. doi:10.1002/jgrd.50128

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the Sheba data. Boundary-Layer Meteorol 116:201–235. doi:10.1007/s10546-004-2729-0

    Article  Google Scholar 

  • Hudson SR, Brandt RE (2005) A Look at the surface-based temperature inversion on the antarctic plateau. J Climate 18:1673–1696. doi:10.1175/JCLI3360.1

    Article  Google Scholar 

  • King JC, Turner J (1997) Antarctic meteorology and climatology. Cambridge University Press, UK, 409 pp

  • Lavallée D, Lovejoy S, Schertzer D, Ladoy P (1993) Nonlinear variability of landscape topography: multifractal analysis and simulation. In: DeCola L, Lam N (eds) Fractals and geography. Prentice Hall, Upper Saddle River, pp 158–192 308 pp

    Google Scholar 

  • Lovejoy S, Schertzer D (2010) Towards a new synthesis for atmospheric dynamics: space-time cascades. Atmos Res 96:1–52

    Article  Google Scholar 

  • Lovejoy S, Schertzer D (2011) Space-time cascades and the scaling of ECMWF reanalyses: fluxes and fields. J Geophys Res Atmos 116:D14117. doi:10.1029/2011JD015654

    Article  Google Scholar 

  • Nykanen DK (2008) Linkages between orographic forcing and the scaling properties of convective rainfall in mountainous regions. J Hydrometeorol 9:327–347. doi:10.1175/2007JHM839.1

    Article  Google Scholar 

  • Olsson J (1995) Limits and characteristics of the multifractal behaviour of a high-resolution rainfall time series. Nonlinear Proc Geoph 2:23–29

    Article  Google Scholar 

  • Pecknold S, Lovejoy S, Schertzer D, Hooge C, Malouin J (1993) The simulation of universal multifractals. In: Perdang JM, Lejeune A (eds) Cellular automata: prospects in astronomy and astrophysics, vol 1. World Scientific, Hackensack, pp 228–267, 416 pp

  • Priestley MB (1981) Spectral analysis and time series. Academic Press, New York, 661 pp

  • Purdy JC, Harris D, Austin GL, Seed AW, Gray W (2001) A case study of orographic rainfall processes incorporating multiscaling characterization techniques. J Geophys Res 106:7837–7845. doi:10.1029/2000JD900622

    Article  Google Scholar 

  • Rysman JF, Verrier S, Lemaître Y, Moreau E (2013) Space-time variability of the rainfall over the western Mediterranean region: a statistical analysis. J Geophys Res Atmos 118:8448–8459. doi:10.1002/jgrd.50656

    Article  Google Scholar 

  • Schertzer D, Lovejoy S (1987) Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J Geophys Res 92:9693–9714. doi:10.1029/JD092iD08p09693

    Article  Google Scholar 

  • Schmitt F, Lovejoy S, Schertzer D, Lavallée D, Hooge C (1992) Estimations directes des indices de multifractals universels dans le champ de vent et de température. C Rendues de l’Acad Sciences (Paris) 314:749–754

    Google Scholar 

  • She Z, Leveque E (1994) Universal scaling laws in fully developed turbulence. Phys Rev Lett 72:337–339

    Article  Google Scholar 

  • Stolle J, Lovejoy S, Schertzer D (2009) The stochastic multiplicative cascade structure of deterministic numerical models of the atmosphere. Nonlinear Proc Geophys 16:607–621

    Article  Google Scholar 

  • Stolle J, Lovejoy S, Schertzer D (2012) The temporal cascade structure of reanalyses and global circulation models. Q J R Meteorol Soc 138:1895–1913. doi:10.1002/qj.1916

    Article  Google Scholar 

  • Tessier Y, Lovejoy S, Schertzer D (1993) Universal multifractals: theory and observations for rain and clouds. Appl Meteorol 32:223–250. doi:10.1175/1520-0450

    Article  Google Scholar 

  • Travouillon T, Ashley MCB, Burton MG, Storey JWV, Loewenstein RF (2003) Atmospheric turbulence at the South Pole and its implications for astronomy. Astron Astrophys 400:1163–1172. doi:10.1051/0004-6361:20021814

    Article  Google Scholar 

  • Verrier S, Mallet C, Barthès L (2011) Multiscaling properties of rain in the time domain, taking into account rain support biases. J Geophys Res Atmos 116:D20119. doi:10.1029/2011JD015719

    Article  Google Scholar 

  • Yaglom AM (1966) The influence of fluctuations in energy dissipation on the shape of turbulence characteristics in the inertial interval. Soviet Phys Doklady 11:26–30

    Google Scholar 

Download references

Acknowledgments

Boundary-layer observations and research at Dome C were supported by the French Polar Institute (IPEV; CALVA program), Institut National des Sciences de l,Univers (Concordia and LEFE-CLAPA programs), and Observatoire des Sciences de l,Univers de Grenoble (OSUG). We are grateful to Yvon Lemaître for his precious help. The authors wish to thank two anonymous reviewers whose valuable feedback greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Rysman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rysman, JF., Verrier, S., Lahellec, A. et al. Analysis of Boundary-Layer Statistical Properties at Dome C, Antarctica. Boundary-Layer Meteorol 156, 145–155 (2015). https://doi.org/10.1007/s10546-015-0024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0024-x

Keywords

Navigation