Skip to main content
Log in

Aniline-based catalysts as promising tools to improve analysis of carbonyl compounds through derivatization techniques: preliminary results using dansylacetamidooxyamine derivatization and LC-fluorescence

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Derivatization techniques based on α-effect amines and H+ catalysis are commonly used for the measurement of carbonyl compounds (CCs), whether in environmental, food, or biological samples. Here, we investigated the potential of aniline-based catalysts to improve derivatization rates of selected carbonyls by using dansylacetamidooxyamine (DNSAOA) as a reagent. Kinetic experiments were performed in aqueous solutions by varying catalyst and CC concentrations and delivered insights into the reaction mechanism. Using anilinium acetate (AnAc), rate constants varied linearly with the catalyst concentration with rate enhancements toward H+-catalyzed reactions as high as ca. 90 and 200 for acetone and benzaldehyde, respectively. Owing to contamination problems when using AnAc, anilinium chloride (AnCl) was chosen for the optimized analysis of real samples at low concentration. Rate enhancements for derivatization reaction of 4.4 (methylglyoxal), 6.0 (glyoxal), 12 (acetone), 20 (formaldehyde), and 47 (hydroxyacetaldehyde) were obtained using 0.1 M AnCl. The optimized method was successfully applied to the determination of the above compounds in natural snow and meltwater samples. Limits of detection (LODs) and limits of quantification (LOQs) were in the 2–14 and 7–41 nM range, respectively, i.e., low enough to allow for the analysis of most natural samples. Satisfactory relative recoveries (92.8 ± 3.8–118.3 ± 4.4%) and intra-day precision (2.7–11.3%) were achieved. Finally, we think that this approach could be applied not only to every α-effect nitrogen reagent—with the most evident profit of lowering derivatization times and particularly those required for low-reactive ketones—but also to the derivatization of CCs onto coated solid sorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carlier P, Hannachi H, Mouvier G. The chemistry of carbonyl compounds in the atmosphere: a review. Atmos Environ. 1986;20(11):2079–99. https://doi.org/10.1016/0004-6981(86)90304-5

    Article  CAS  Google Scholar 

  2. International Agency for Research on Cancer (IARC). Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon, France, 2006, 88, 39–325.

  3. Salthammer T, Mentese S, Marutzky R. Formaldehyde in the indoor environment. Chem Rev. 2010;110(4):2536–72. https://doi.org/10.1021/cr800399g

    Article  CAS  Google Scholar 

  4. Matsumoto K, Kawai S, Igawa M. Dominant factors controlling concentrations of aldehydes in rain, fog, dew water, and in the gas phase. Atmos Environ. 2005;39(38):7321–9. https://doi.org/10.1016/j.atmosenv.2005.09.009

    Article  CAS  Google Scholar 

  5. Kampf C, Bonn B, Hoffmann T. Development and validation of a selective HPLC-ESI-MS/MS method for the quantification of glyoxal and methylglyoxal in atmospheric aerosols (PM2.5). Anal Bioanal Chem. 2011;401(10):3115–24. https://doi.org/10.1007/s00216-011-5192-z

    Article  CAS  Google Scholar 

  6. Mauderly JL, Chow JC. Health effects of organic aerosols. Inhal Toxicol. 2008;20(3):257–88. https://doi.org/10.1080/08958370701866008

    Article  CAS  Google Scholar 

  7. Feron VJ, Til HP, de Vrijer F, Woutersen RA, Cassee FR, van Bladeren PJ. Aldehydes: occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat Res. 1991;259(3):363–85. https://doi.org/10.1016/0165-1218(91)90128-9

    Article  CAS  Google Scholar 

  8. Ojeda AG, Wrobel K, Escobosa ARC, Garay-Sevilla ME, Wrobel K. High-performance liquid chromatography determination of glyoxal, methylglyoxal, and diacetyl in urine using 4-methoxy-o-phenylenediamine as derivatizing reagent. Anal Biochem 2014;449(0):52–58. https://doi.org/10.1016/j.ab.2013.12.014.

    Article  CAS  Google Scholar 

  9. Espinosa-Mansilla A, Salinas F, Leal AR. Determination of malonaldehyde in human plasma: elimination of spectral interferences in the 2-thiobarbituric acid reaction. Analyst. 1993;118(1):89–95. https://doi.org/10.1039/an9931800089

    Article  CAS  Google Scholar 

  10. Mittelmaier S, Fünfrocken M, Fenn D, Berlich R, Pischetsrieder M. Quantification of the six major α-dicarbonyl contaminants in peritoneal dialysis fluids by UHPLC/DAD/MSMS. Anal Bioanal Chem. 2011;401(4):1183–93. https://doi.org/10.1007/s00216-011-5195-9

    Article  CAS  Google Scholar 

  11. Svendsen C, Høie AH, Alexander J, Murkovic M, Husøy T. The food processing contaminant glyoxal promotes tumour growth in the multiple intestinal neoplasia (MIN) mouse model. Food Chem Toxicol. 2016;94(Supplement C):197–202. https://doi.org/doi.org/10.1016/j.fct.2016.06.006.

    Article  CAS  Google Scholar 

  12. MacDonald SM, Oetjen H, Mahajan AS, Whalley LK, Edwards PM, Heard DE, et al. DOAS measurements of formaldehyde and glyoxal above a south-east Asian tropical rainforest. Atmos Chem Phys. 2012;12(13):5949–62. https://doi.org/10.5194/acp-12-5949-2012

    Article  CAS  Google Scholar 

  13. Stönner C, Derstroff B, Klüpfel T, Crowley JN, Williams J. Glyoxal measurement with a proton transfer reaction time of flight mass spectrometer (PTR-TOF-MS): characterization and calibration. J Mass Spectrom. 2017;52(1):30–5. https://doi.org/10.1002/jms.3893

    Article  Google Scholar 

  14. Szulejko JE, Kim K-H. Derivatization techniques for determination of carbonyls in air. Trends Anal Chem. 2015;64:29–41. https://doi.org/10.1016/j.trac.2014.08.010

    Article  CAS  Google Scholar 

  15. Vairavamurthy A, Roberts JM, Newman L. Methods for determination of low molecular weight carbonyl compounds in the atmosphere: a review. Atmos Environ. 1992;26(11):1965–93. https://doi.org/10.1016/0960-1686(92)90083-W

    Article  Google Scholar 

  16. Muller-Tautges C, Eichler A, Schwikowski M, Hoffmann T. A new sensitive method for the quantification of glyoxal and methylglyoxal in snow and ice by stir bar sorptive extraction and liquid desorption-HPLC-ESI-MS. Anal Bioanal Chem. 2014;406(11):2525–32. https://doi.org/10.1007/s00216-014-7640-z

    Article  Google Scholar 

  17. Zwiener C, Glauner T, Frimmel F. Method optimization for the determination of carbonyl compounds in disinfected water by DNPH derivatization and LC-ESI-MS-MS. Anal Bioanal Chem. 2002;372(5):615–21. https://doi.org/10.1007/s00216-002-1233-y

    Article  CAS  Google Scholar 

  18. Osório VM, Cardeal ZL. Analytical methods to assess carbonyl compounds in foods and beverages. J Braz Chem Soc. 2013;24:1711–8. https://doi.org/10.5935/0103-5053.20130236

    Google Scholar 

  19. Hoz S, Buncel E. The α-effect: a critical examination of the phenomenon and its origin. Isr J Chem. 1985;26(4):313–9. https://doi.org/10.1002/ijch.198500113

    Article  CAS  Google Scholar 

  20. Vogel M, Büldt A, Karst U. Hydrazine reagents as derivatizing agents in environmental analysis—a critical review. Fresenius J Anal Chem. 2000;366(8):781–91. https://doi.org/10.1007/s002160051572

    Article  CAS  Google Scholar 

  21. Compendium Method TO-11A: determination of formaldehyde in ambient air using adsorbent cartridge followed by high performance liquid chromatography, U.S. Environmental Protection Agency, Washington, DC, EPA/625/R-96/010b, 1999.

  22. Campisano R, Hall K, Griggs J, Willison S, Reimer S, Mash H, Magnuson M, Boczek L, Rhodes E. Selected analytical methods for environmental remediation and recovery (SAM) 2017. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-17/356, 2017.

  23. Kalia J, Raines RT. Hydrolytic stability of hydrazones and oximes. Angew Chem Int Ed. 2008;47(39):7523–6. https://doi.org/10.1002/anie.200802651

    Article  CAS  Google Scholar 

  24. Houdier S, Perrier S, Defrancq E, Legrand M. A new fluorescent probe for sensitive detection of carbonyl compounds: sensitivity improvement and application to environmental water samples. Anal Chim Acta. 2000;412(1–2):221–33. https://doi.org/10.1016/s0003-2670(99)00875-2

    Article  CAS  Google Scholar 

  25. Domine F, Houdier S, Taillandier AS, Simpson WR. Acetaldehyde in the Alaskan subarctic snowpack. Atmos Chem Phys. 2010;10(3):919–29. https://doi.org/10.5194/acp-10-919-2010

    Article  CAS  Google Scholar 

  26. Houdier S, Perrier S, Domine F, Cabanes A, Legagneux L, Grannas AM, et al. Acetaldehyde and acetone in the Arctic snowpack during the ALERT2000 campaign. Snowpack composition, incorporation processes and atmospheric impact. Atmos Environ. 2002;36(15–16):2609–18. https://doi.org/10.1016/s1352-2310(02)00109-7

    Article  CAS  Google Scholar 

  27. Deguillaume L, Charbouillot T, Joly M, Vaïtilingom M, Parazols M, Marinoni A, et al. Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties. Atmos Chem Phys. 2014;14(3):1485–506. https://doi.org/10.5194/acp-14-1485-2014

    Article  CAS  Google Scholar 

  28. Houdier S, Barret M, Domine F, Charbouillot T, Deguillaume L, Voisin D. Sensitive determination of glyoxal, methylglyoxal and hydroxyacetaldehyde in environmental water samples by using dansylacetamidooxyamine derivatization and liquid chromatography/fluorescence. Anal Chim Acta. 2011;704(1–2):162–73. https://doi.org/10.1016/j.aca.2011.08.002

    Article  CAS  Google Scholar 

  29. Larsen D, Pittelkow M, Karmakar S, Kool ET. New organocatalyst scaffolds with high activity in promoting hydrazone and oxime formation at neutral pH. Org Lett. 2015;17(2):274–7. https://doi.org/10.1021/ol503372j

    Article  CAS  Google Scholar 

  30. Dirksen A, Yegneswaran S, Dawson PE. Bisaryl hydrazones as exchangeable biocompatible linkers. Angew Chem Int Ed. 2010;49(11):2023–7. https://doi.org/10.1002/anie.200906756

    Article  CAS  Google Scholar 

  31. Dirksen A, Dawson PE. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjug Chem. 2008;19(12):2543–8. https://doi.org/10.1021/bc800310p

    Article  CAS  Google Scholar 

  32. Dirksen A, Hackeng TM, Dawson PE. Nucleophilic catalysis of oxime ligation. Angew Chem Int Ed. 2006;45(45):7581–4. https://doi.org/10.1002/anie.200602877

    Article  CAS  Google Scholar 

  33. Dirksen A, Dirksen S, Hackeng TM, Dawson PE. Nucleophilic catalysis of hydrazone formation and transimination: implications for dynamic covalent chemistry. J Am Chem Soc. 2006;128(49):15602–3. https://doi.org/10.1021/ja067189k

    Article  CAS  Google Scholar 

  34. Cordes EH, Jencks WP. Nucleophilic catalysis of semicarbazone formation by anilines. J Am Chem Soc. 1962;84(5):826–31. https://doi.org/10.1021/ja00864a030

    Article  CAS  Google Scholar 

  35. Arnett EM, Quirk RP, Larsen JW. Weak bases in strong acids. IV. Basicity scale for carbonyl compounds based on heats of ionization in fluorosulfuric acid. J Am Chem Soc. 1970;92(13):3977–84. https://doi.org/10.1021/ja00716a025

    Article  CAS  Google Scholar 

  36. Rashidian M, Mahmoodi MM, Shah R, Dozier JK, Wagner CR, Distefano MD. A highly efficient catalyst for oxime ligation and hydrazone-oxime exchange suitable for bioconjugation. Bioconjug Chem. 2013;24(3):333–42. https://doi.org/10.1021/bc3004167

    Article  CAS  Google Scholar 

  37. Crisalli P, Kool ET. Water-soluble organocatalysts for hydrazone and oxime formation. J Org Chem. 2013;78(3):1184–9. https://doi.org/10.1021/jo302746p

    Article  CAS  Google Scholar 

  38. Thygesen MB, Munch H, Sauer J, Cló E, Jørgensen MR, Hindsgaul O, et al. Nucleophilic catalysis of carbohydrate oxime formation by anilines. J Org Chem. 2010;75(5):1752–5. https://doi.org/10.1021/jo902425v

    Article  CAS  Google Scholar 

  39. González O, Blanco ME, Iriarte G, Bartolomé L, Maguregui MI, Alonso RM. Bioanalytical chromatographic method validation according to current regulations, with a special focus on the non-well defined parameters limit of quantification, robustness and matrix effect. J Chrom A. 2014;1353:10–27. https://doi.org/10.1016/j.chroma.2014.03.077

    Article  Google Scholar 

  40. Matsunaga S, Kawamura K. Determination of α- and β-hydroxycarbonyls and dicarbonyls in snow and rain samples by GC/FID and GC/MS employing benzyl hydroxyl oxime derivatization. Anal Chem. 2000;72(19):4742–6. https://doi.org/10.1021/ac000267g

    Article  CAS  Google Scholar 

  41. Perraud V, Francois S, Wortham H, Jourdain B, Houdier S, Kardos N. Application of a data-processing model to determine the optimal sampling conditions for liquid phase trapping of atmospheric carbonyl compounds. Talanta. 2008;76(4):824–31. https://doi.org/10.1016/j.talanta.2008.04.038

    Article  CAS  Google Scholar 

  42. Bao M-l, Pantani F, Griffini O, Burrini D, Santianni D, Barbieri K. Determination of carbonyl compounds in water by derivatization—solid-phase microextraction and gas chromatographic analysis. J Chrom A. 1998;809(1–2):75–87. https://doi.org/10.1016/S0021-9673(98)00188-5

    Article  CAS  Google Scholar 

  43. Herrington JS, Hays MD. Concerns regarding 24-h sampling for formaldehyde, acetaldehyde, and acrolein using 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents. Atmos Environ 2012;55(0):179–184. https://doi.org/10.2016/j.atmosenv.2012.02.088.

  44. Ho SSH, Chow JC, Watson JG, Ip HSS, Ho KF, Dai WT, et al. Biases in ketone measurements using DNPH-coated solid sorbent cartridges. Anal Methods. 2014;6(4):967–74. https://doi.org/10.1039/c3ay41636d

    Article  CAS  Google Scholar 

  45. Uchiyama S, Kaneko T, Tokunaga H, Ando M, Otsubo Y. Acid-catalyzed isomerization and decomposition of ketone-2,4-dinitrophenylhydrazones. Anal Chim Acta. 2007;605(2):198–204. https://doi.org/10.1016/j.aca.2007.10.031

    Article  CAS  Google Scholar 

  46. Ho SSH, Ho KF, Liu WD, Lee SC, Dai WT, Cao JJ, et al. Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls. Atmos Environ. 2011;45(1):261–5. https://doi.org/10.1016/j.atmosenv.2010.09.042

    Article  CAS  Google Scholar 

  47. Herrington JS, Fan Z-H, Lioy PJ, Zhang J. Low acetaldehyde collection efficiencies for 24-hour sampling with 2,4-dinitrophenylhydrazine (DNPH)-coated solid sorbents. Environ Sci Technol. 2007;41(2):580–5. https://doi.org/10.1021/es061247k

    Article  CAS  Google Scholar 

  48. Aiello M, McLaren R. Measurement of airborne carbonyls using an automated sampling and analysis system. Environ Sci Technol. 2009;43(23):8901–7. https://doi.org/10.1021/es901892f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided through a grant from Labex OSUG@2020 (Investissements d′Avenir - ANR10 LABX56). We are grateful to the Institut Polar Emile Victor (CHIMERPOL 399) for financing the field campaign in Svalbard and to Alexandre Renard and Catherine Larose who performed snow samplings during the campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphan Houdier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

Not applicable

Informed consent

Not applicable

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houdier, S., Lévêque, J., Sabatier, T. et al. Aniline-based catalysts as promising tools to improve analysis of carbonyl compounds through derivatization techniques: preliminary results using dansylacetamidooxyamine derivatization and LC-fluorescence. Anal Bioanal Chem 410, 7031–7042 (2018). https://doi.org/10.1007/s00216-018-1304-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1304-3

Keywords

Navigation