Articles | Volume 15, issue 11
https://doi.org/10.5194/acp-15-6225-2015
https://doi.org/10.5194/acp-15-6225-2015
Research article
 | 
08 Jun 2015
Research article |  | 08 Jun 2015

Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign

H. Gallée, S. Preunkert, S. Argentini, M. M. Frey, C. Genthon, B. Jourdain, I. Pietroni, G. Casasanta, H. Barral, E. Vignon, C. Amory, and M. Legrand

Abstract. Regional climate model MAR (Modèle Atmosphérique Régional) was run for the region of Dome C located on the East Antarctic plateau, during Antarctic summer 2011–2012, in order to refine our understanding of meteorological conditions during the OPALE tropospheric chemistry campaign. A very high vertical resolution is set up in the lower troposphere, with a grid spacing of roughly 2 m. Model output is compared with temperatures and winds observed near the surface and from a 45 m high tower as well as sodar and radiation data. MAR is generally in very good agreement with the observations, but sometimes underestimates cloud formation, leading to an underestimation of the simulated downward long-wave radiation. Absorbed short-wave radiation may also be slightly overestimated due to an underestimation of the snow albedo, and this influences the surface energy budget and atmospheric turbulence. Nevertheless, the model provides sufficiently reliable information about surface turbulent fluxes, vertical profiles of vertical diffusion coefficients and boundary layer height when discussing the representativeness of chemical measurements made nearby the ground surface during field campaigns conducted at Concordia station located at Dome C (3233 m above sea level).

Short summary
Regional climate model MAR was run for the region of Dome C located on the East Antarctic plateau, during summer 2011–2012, with a high vertical resolution in the lower troposphere. MAR is generally in very good agreement with the observations and provides sufficiently reliable information about surface turbulent fluxes and vertical profiles of vertical diffusion coefficients when discussing the representativeness of chemical measurements made nearby the ground surface at Dome C.
Altmetrics
Final-revised paper
Preprint