Skip to main content

Advertisement

Log in

Daily characteristics of West African summer monsoon precipitation in CORDEX simulations

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

We analyze and intercompare the performance of a set of ten regional climate models (RCMs) along with the ensemble mean of their statistics in simulating daily precipitation characteristics during the West African monsoon (WAM) period (June–July–August–September). The experiments are conducted within the framework of the COordinated Regional Downscaling Experiments for the African domain. We find that the RCMs exhibit substantial differences that are associated with a wide range of estimates of higher-order statistics, such as intensity, frequency, and daily extremes mostly driven by the convective scheme employed. For instance, a number of the RCMs simulate a similar number of wet days compared to observations but greater rainfall intensity, especially in oceanic regions adjacent to the Guinea Highlands because of a larger number of heavy precipitation events. Other models exhibit a higher wet-day frequency but much lower rainfall intensity over West Africa due to the occurrence of less frequent heavy rainfall events. This indicates the existence of large uncertainties related to the simulation of daily rainfall characteristics by the RCMs. The ensemble mean of the indices substantially improves the RCMs’ simulated frequency and intensity of precipitation events, moderately outperforms that of the 95th percentile, and provides mixed benefits for the dry and wet spells. Although the ensemble mean improved results cannot be generalized, such an approach produces encouraging results and can help, to some extent, to improve the robustness of the response of the WAM daily precipitation to the anthropogenic greenhouse gas warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abiodun BJ, Adeyewa ZD, Oguntunde PG, Salami AT, Ajayi VO (2012) Modeling the impacts of reforestation on future climate in West Africa. Theor Appl Climatol, 1-20 doi:10.1007/s00704-012-0614-1

  • Afiesimama EA, Pal JS, Abiodun BJ, Jr Gutowski WJ, Adedoyin A (2006) Simulation of West African monsoon using RegCM3. Part I: model validation and interannual variability. Theor Appl Climatol 86:23–27

    Article  Google Scholar 

  • Ali A, Amani A, Diedhiou A, Lebel T (2005) Rainfall estimation in the Sahel. Part 2: evaluation of raingauge networks in the CILSS countries and objective intercomparison of rainfall products. J Appl Meteorol 44(11):1707–1722

    Article  Google Scholar 

  • Baldauf M (2008) Stability analysis for linear discretisations of the advection equation with Runge–Kutta time integration. J Comput Phys 227:6638–6659

    Article  Google Scholar 

  • Baldauf M, Schulz JP (2004) Prognostic precipitation in the Lokal-Modell (LM) of DWD. COSMO Newslett 4:177–180

    Google Scholar 

  • Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139(12):3887–3905. doi:10.1175/MWR-D-10-05013.1

    Article  Google Scholar 

  • Benoit R, Cote J, Mailhot J (1989) Inclusion of a TKE boundary layer parameterization in the Canadian regional finite-element model. Mon Weather Rev 117:1726–1750

    Article  Google Scholar 

  • Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Weather Rev 113:2108–2121

    Article  Google Scholar 

  • Browne NAK, Sylla MB (2012) Regional climate model sensitivity to domain size for the simulation of the West African monsoon rainfall. Int J Geophys 2012, Article ID 625831. doi:10.1155/2012/625831

  • Buzzi M, Rotach MW, Raschendorfer M, Holtslag AAM (2011) Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteorol Z 20:335–350

    Article  Google Scholar 

  • Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2006) The HIRHAM regional climate model. Version 5. DMI technical report 06-17: Available online at http://www.dmi.dk/dmi/trpdf

  • Crétat J, Vizy EK, Cook KH (2013) How well are daily intense rainfall events captured by current climate models over Africa? Clim Dyn. doi:10.1007/s00382-013-1796-7

    Google Scholar 

  • Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126:1–30

    Article  Google Scholar 

  • Dee and co-authors (2011): The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorology Society 137: 553-597. doi:10.1002/qj.828.

  • Delage Y (1997) Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound-Layer Meteorol 82:23–48

    Article  Google Scholar 

  • Déqué M (2010) Regional climate simulation with a mosaic of RCMs. Meteorol Z 19:259–266

    Article  Google Scholar 

  • Diallo I, Sylla MB, Giorgi F, Gaye AT, Camara M (2012) Multi-model GCM-RCM ensemble based projections of temperature and precipitation over West Africa for the early 21st century. Int J Geophys 2012, Article ID 972896. doi:10.1155/2012/972896

  • Diallo I, Giorgi F, Sukumaran S, Stordal F, Giuliani G (2013a) Change in daily extremes in the early future over Southern Africa using RegCM4 regional climate model. Int J Climatol (under review)

  • Diallo I, Sylla MB, Camara M, Gaye AT (2013b) Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations. Theor Appl Climatol 113:351–362. doi:10.1007/s00704-012-0791-y

    Article  Google Scholar 

  • Dickinson RE, Henderson SA, Kennedy PJ (1993) Biosphere–Atmosphere Transfer Scheme (BATS) version 1E as coupled to the NCAR community climate model. NCAR tech. rep. TN-387 + STR, 72 pp

  • Diedhiou A, Janicot S, Viltard A, de Felice P (1998) Evidence of two regimes of easterly waves over West Africa and tropical Atlantic. Geophys Res Lett 25:2805–2808

    Article  Google Scholar 

  • Doms G, Förstner J, Heise E, Herzog H-J, Raschendorfer M, Schrodin R, Reinhardt T, Vogel G (2007) A description of the nonhydrostatic regional model LM (version 3.20). Part II: Physical parameterization. [available online at http://www.cosmo-model.org/content/model/documentation/core/cosmoPhysParamtr.pdf]

  • Douville HS, Planton JF, Royer DB, Stephenson S, Tyteca L, Kergoat S, Lafont RA, Betts RA (2000) The importance of vegetation feedbacks in doubled-CO2 time-slice experiments. J Geophys Res 105(14):14 841–14 861

    Article  Google Scholar 

  • Druyan LM, Feng J, Cook KH, Xue Y, Fulakeza M, Hagos SM, Konaré A, Moufama-Okia W, Powell DP, Vizy EK, Ibrah SS (2010) The WAMME regional model intercomparison study. Clim Dyn 35:175–192. doi:10.1007/s00382-009-0676-7

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • ECMWF, cited 2006: IFS documentation—Cy31r1 operational implementation PART IV: physical processes. [available online at http://www.ecmwf.int/research/ifsdocs/CY31r1/PHYSICS/IFSPart4.pdf]

  • Edwards JM, Slingo A (1996) Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Q J R Meteorol Soc 122:689–719

    Article  Google Scholar 

  • Essery RLH, Best MJ, Betts RA, Cox PM (2003) Explicit representation of subgrid het erogeneity in a GCM land surface scheme. J Hydrometeorol 4:530–543

    Article  Google Scholar 

  • Fouquart Y, Bonnel B (1980) Computations of solar heating of the earth’s atmosphere: a new parameterization. Beitr Phys Atmos 53:35–62

    Google Scholar 

  • Fritsch JM, Chappell C (1980) Numerical simulation of convectively driven pressure systems. Part I: convective parameterization. J Atmos Sci 37:1722–1733

    Article  Google Scholar 

  • Gbobaniyi E, Sarr A, Sylla MB, Diallo I et al (2013) Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int J Climatol. doi:10.1002/joc.3834

    Google Scholar 

  • Giorgetta M, Wild M (1995) The water vapor continuum and its representation in ECHAM4. Rep. 162. Max-Planck-Inst. für Meteorol, Hamburg, 38 pp

    Google Scholar 

  • Giorgi F, Diffenbaugh NS, Gao XJ et al (2008) The regional climate change hyper-matrix framework. Eos 89(45):445–446

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Giorgi F, Coppola E, Raffaele F, Diro GT, Fuentes-Franco R, Giuliani G, Mamgain A, Llopart MP, Mariotti L, Torma C (2014) Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim Chang 125:39–51. doi:10.1007/s10584-014-1117-0

    Article  Google Scholar 

  • Gregory D, Allen S (1991) The effect of convective downdraughts upon NWP and climate simulations. Proc. ninth conference on numerical weather prediction, Denver, Colorado, 122-123

  • Gregory D, Rowntree PR (1990) A mass-flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. J Geophys Res 92(14):14 198–14 203

    Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Hagemann S (2002) An improved land surface parameter dataset for global and regional climate models. MPI report 336: 21 pp

  • Hagos SM, Cook KH (2007) Dynamics of the West African monsoon jump. J Clim 20(21):5264–5284

    Article  Google Scholar 

  • Herzog H-J, Vogel G, Schubert U (2002) LLM—a nonhydrostatic model applied to high-resolving simulations of turbulent fluxes over heterogeneous terrain. Theor Appl Climatol 73:67–86

    Article  Google Scholar 

  • Holtslag AAM, De Bruin EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120

    Article  Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Hourdin F, Musat I, Guichard F, Ruti PM, Favot F, Filiberti MA, Pham M, Grandpeix JY, Polcher J, Marquet P, Boone A, Lafore JP, Redelsperger JL, Dellaquila A, Losada Doval T, Khadre Traore A, Gallee H (2010) AMMA—model intercomparison project. Bull Am Meteorol Soc 91:95–104. doi:10.1175/2009BAMS2791.1

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2(1):36–50. doi:10.1175/1525-7541(2001)002

    Article  Google Scholar 

  • Ibrahim SB, Afolami CA, Ayinde IA, Adeofun CO (2011) Modelling arable crop farmers’ decisions on climate change and adaptation strategies: a multinomial logit analysis in Ogun State. Proceedings of the Environmental Management Conference, Federal University of Agriculture, Abeokuta, Nigeria, 2011

  • Im ES, Jung IW, Bae DH (2011) The temporal and spatial structures of recent and future trends in extreme indices over Korea from a regional climate projection. Int J Climatol 31:72–86. doi:10.1002/joc.2063

    Article  Google Scholar 

  • Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012) Assessing the transferability of the regional climate model REMO to different COordinated Regional Climate Downscaling EXperiment (CORDEX) regions. Atmosphere 3:181–199

    Article  Google Scholar 

  • Jones R, Noguer M, Hassel D, Hudson D, Wilson S, Jenkins G, Mitchell J (2004) Generating high resolution regional climate change using PRECIS. Met Office Hadley Centre, Exeter

    Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization. An update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802

    Article  Google Scholar 

  • Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the Kain-Fritsch scheme. The representation of cumulus convection in numerical models. Meteor. Monogr., No. 24, Amer Meteor Soc 165-170

  • Kalognomou E, Lennard C, Shongwe M, Pinto I, Kent M, Hewitson B, Dosio A, Nikulin G, Panitz H, Buchner M (2013) A diagnostic evaluation of precipitation in CORDEX models over southern Africa. J Clim 26(23)

  • Kamga AF, Buscarlet E (2006) Simulation du climat de l’Afrique de l’Ouest à l’aide d’un modèle climatique régional. La Meteorologie, vol. 52, pp. 28–37, 2006

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR community climate model (CCM3). NCAR tech. note 4201STR, 152 pp

  • Kummerow C, Hong Y, Olson WS, Yang S, Adler RF, McCollum J, Ferraro R, Petty G, Shin DB, Wilheit TT. (2001) The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. Journal of Appl Met 40: 1801–1840.

  • Kuo HL (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J Atmos Sci 22:40–63

    Article  Google Scholar 

  • Li J, Barker HW (2005) A radiation algorithm with correlated k-distribution. Part I: local thermal equilibrium. J Atmos Sci 62:286–309

    Article  Google Scholar 

  • Liu H, Zhang DL, Wang B (2010) Impact of horizontal resolution on the regional climate simulations of the summer 1998 extreme rainfall along the Yangtze River Basin. J Geophys Res 115, D12115. doi:10.1029/2009JD012746

    Article  Google Scholar 

  • Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim Dyn 12:557–572

    Article  Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteor 17:187–202

    Article  Google Scholar 

  • Love TB, Kumar V, Xie PP, Thiaw W (2004) A 20-year daily Africa precipitation climatology using satellite and gauge data. Preprints, 14th Conference on Applied Climatology, Seattle, WA, American Meteorological Society P5.4

  • Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 29:2241–2255

    Article  Google Scholar 

  • Mariotti L, Coppola E, Sylla MB, Giorgi F, Piani C (2011) Regional climate model simulation of projected 21st century climate change over an all-Africa domain: comparison analysis of nested and driving model results. J Geophys Res 116, D15111. doi:10.1029/2010JD015068

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Tebaldi C (2007) Contributions of natural and anthropogenic forcing to changes in temperature extremes over the U.S. Geophys Res Lett 34, L19709. doi:10.1029/2007GL030948

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16 663–16 682

    Article  Google Scholar 

  • Morcrette JJ (1990) Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon Weather Rev 118:847–873

    Article  Google Scholar 

  • Morcrette JJ, Smith L, Fouquart Y (1986) Pressure and temperature dependence of the absorption in longwave radiation parameterizations. Beitr Physics Atmos 59:455–469

    Google Scholar 

  • Moufouma-Okia W, Rowell D (2010) Impact of soil moisture initialisation and lateral boundary conditions on regional climate model simulations of the West African Monsoon. Clim Dyn 35:213–229

    Article  Google Scholar 

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim. doi:10.1175/JCLI-D-11-00375.1

    Google Scholar 

  • Paeth H, Born K, Podzun R, Jacob D (2005) Regional dynamic downscaling over West Africa: model evaluation and comparison of wet and dry years. Meteorol Z 14:349–367

    Article  Google Scholar 

  • Paeth H, Born K, Girmes R, Podzun R, Jacob D (2009) Regional climate change in tropical and Northern Africa due to greenhouse forcing and land use changes. J Clim 22:114–132. doi:10.1175/2008JCLI2390.1

    Article  Google Scholar 

  • Paeth H, Hall NM, Gaertner MA, Alonso MD, Moumouni S, Polcher J et al (2011) Progress in regional downscaling of West African precipitation. Atmos Sci Lett 12:75–82

    Article  Google Scholar 

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105:29 579–29 594

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed F, Bell JL, Diffanbaugh NS, Kamacharya J, Konare A, Martinez D, da Rocha RP, Sloan LC, Steiner A (2007) The ICTP RegCM3 and RegCNET: regional climate modeling for the developing world. Bull Am Meteorol Soc 88:1395–1409

    Article  Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Rasch PJ, Kristjánsson JE (1998) A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Clim 11:1587–1614

    Article  Google Scholar 

  • Rechid D, Raddatz TJ, Jacob D (2009) Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modelling. Theor Appl Climatol 95:245–255

    Article  Google Scholar 

  • Redelsperger JL, Diongue A, Diedhiou A, Ceron JP, Diop M, Gueremy JF, Lafore JP (2002) Multi-scale description of a Sahelian synoptic weather system representative of the West African Monsoon. Q J R Meteorol Soc 128(582):1229–1257

    Article  Google Scholar 

  • Ricard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115

    Google Scholar 

  • Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325. doi:10.1175/1520-0493(1992)120\0303:ACRSFN[2.0.CO;2

    Article  Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348. doi:10.1127/0941-2948/2008/0309

    Article  Google Scholar 

  • Samuelsson P, Gollvik S, Ullerstig A (2006) The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3). SMHI Rep Met 122:25pp

    Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre regional climate model RCA3: model description and performance. Tellus A 63:4–23

    Article  Google Scholar 

  • Sass BH, Rontu L, Savijärvi H, Räisänen P (1994) HIRLAM-2 radiation scheme: Documentation and tests. SMHI HIRLAM tech. rep. 16, 43 pp

  • Savijärvi H (1990) A fast radiation scheme for mesoscale model and short-range forecast models. J Appl Meteorol 29:437–447

    Article  Google Scholar 

  • Schulz J-P, Dümenil L, Polcher J, Schlosser CA, Xue Y (1998) Land surface energy and moisture fluxes: comparing three models. J Appl Meteorol 37:288–307

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR tech. note NCAR/TN–75 + STR, 113 pp

  • Smirnova TG, Brown JM, Benjamin SG, Kim D (2000) Parameterization of cold season processes in the MAPS land-surface scheme. J Geophys Res 105:4077–4086

    Article  Google Scholar 

  • Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Q J R Meteorol Soc 116:435–460

    Article  Google Scholar 

  • Sundqvist H, Berge E, Kristjansson JE (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1657

    Article  Google Scholar 

  • Sylla MB, Gaye AT, Pal JS, Jenkins GS, Bi X (2009) High resolution simulations of West Africa climate using regional climate model (RegCM3) with different lateral boundary conditions. Theor Appl Climatol 98:293–314. doi:10.1007/s00704-009-0110-4

    Article  Google Scholar 

  • Sylla MB, Coppola E, Mariotti L, Giorgi F, Ruti PM, Dell’Aquila A, Bi X (2010a) Multiyear simulation of the African climate using a regional climate model (RegCM3) with the high resolution ERA-interim reanalysis. Clim Dyn 35:231–247. doi:10.1007/s00382-009-0613-9

    Article  Google Scholar 

  • Sylla MB, Dell’Aquila A, Ruti PM, Giorgi F (2010b) Simulation of the intraseasonal and the interannual variability of rainfall over West Africa with RegCM3 during the monsoon period. Int J Climatol 30:1865–1883. doi:10.1002/joc.2029

    Google Scholar 

  • Sylla MB, Gaye AT, Jenkins GS, Pal JS, Giorgi F (2010c) Consistency of projected drought over the Sahel with changes in the monsoon circulation and extremes in a regional climate model projections. J Geophys Res 115, D16108. doi:10.1029/2009JD012983

    Article  Google Scholar 

  • Sylla MB, Giorgi F, Ruti PM, Calmanti S, Dell'Aquila A (2011) The impact of deep convection on the West African summer monsoon climate: a regional climate model sensitivity study. Q J R Meteorol Soc 137:1417–1430. doi:10.1002/qj.853

    Article  Google Scholar 

  • Sylla MB, Gaye AT, Jenkins GS (2012) On the fine-scale topography regulating changes in atmospheric hydrological cycle and extreme rainfall over West Africa in a regional climate model projections. International Journal of Geophysics 2012, Article ID 981649, doi:10.1155/2012/981649.

  • Sylla MB, Giorgi F, Coppola E, Mariotti L (2013a) Uncertainties in daily rainfall over Africa: assessment of gridded observation products and evaluation of a regional climate model simulation. Int J Climatol 33:1805–1817. doi:10.1002/joc.3551

    Article  Google Scholar 

  • Sylla MB, Diallo I, Pal JS (2013b) West African monsoon in state-of-the-science regional climate models, climate variability—regional and thematic patterns. Dr. Aondover Tarhule (ed) ISBN: 978-953-51-1187-0, InTech, DOI:10.5772/55140. Available from: http://www.intechopen.com/books/climate-variability-regional-and-thematic-patterns/west-african-monsoon-in-state-of-the-science-regional-climate-models

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in largescale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  • Tiedtke M (1993) Representation of clouds in large-scale models. Mon Weather Rev 121:3040–3061

    Article  Google Scholar 

  • Tolika K, Anagnostopoulou C, Maheras P, Vaadis M (2008) Simulation of future changes in extreme rainfall and temperature conditions over the Greek area: a comparison of two statistical downscaling approaches. Glob Planet Chang 63:132–151

    Article  Google Scholar 

  • Tompkins AM (2002) A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J Atmos Sci 59:1917–1942

    Article  Google Scholar 

  • Torma C, Coppola E, Giorgi F, Bartholy J, Pongracz R (2011) Validation of a high resolution version of the regional climate model RegCM3 over the Carpathian Basin. J Hydrometeorol 12:84–100

    Article  Google Scholar 

  • van Meijgaard E, van Ulft L, van den Berg W, Bosveld F, van den Hurk B, Lenderink G, Siebesma AP (2008) The KNMI regional atmospheric climate model RACMO, version 2.1. KNMI tech. rep., 302, pp. 43

  • Verseghy DL (2000) The Canadian Land Surface Scheme (CLASS): its history and future. Atmos Ocean 38:1–13

    Article  Google Scholar 

  • Walker MD, Diffenbaugh NS (2009) Evaluation of high-resolution simulations of daily-scale temperature and precipitation over the United States. Clim Dyn 33:1131–1147. doi:10.1007/s00382-009-0603-y

    Article  Google Scholar 

  • Wehner MF, Smith R, Duffy P, Bala G (2010) The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Clim Dyn 34:241–247

    Article  Google Scholar 

  • Wilson CA (1992) Vertical diffusion. Unified model documentation paper no. 21, United Kingdom Meteorological Office, Bracknell, Berkshire RG12 2SZ, UK, pp. 4

  • Zadra A, Caya D, Côté J, Dugas B, Jones C, Laprise R, Winger K, Caron L-P (2008) The next Canadian regional climate model. Phys Can 64:75–83

    Google Scholar 

  • Zaroug MAH, Sylla MB, Giorgi F, Eltahir EAB, Aggarwal PK (2013) A sensitivity study on the role of the swamps of southern Sudan in the summer climate of North Africa using a regional climate model. Theor Appl Climatol 113(1–2):63–81. doi:10.1007/s00704-012-0751-6

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a contribution of the West African Analysis group to the CORDEX program. Therefore, we would like to gratefully thank WCRP and START for setting up and funding the CORDEX-Africa analysis initiative and the University of Cape Town for leading the training and analysis program. We would also like to thank the regional downscaling groups who kindly shared the downscaled data used in this analysis. Many thanks to the reviewers whose comments substantially improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouhamadou Bamba Sylla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klutse, N.A.B., Sylla, M.B., Diallo, I. et al. Daily characteristics of West African summer monsoon precipitation in CORDEX simulations. Theor Appl Climatol 123, 369–386 (2016). https://doi.org/10.1007/s00704-014-1352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1352-3

Keywords

Navigation