Skip to main content
Log in

Genotypic variability of oil palm root system distribution in the field. Consequences for water uptake

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Previous studies relating root systems and drought tolerance in oil palm focused mainly on biomass. Yet, total root length (TRL), total root surface area (TRS), and root distribution in the soil better determine water uptake. These morphological traits were studied on 3 oil palm genotypes displaying a contrasting drought tolerance. A new concept of potential root water extraction ratio (PRER) was developed using measured half-distances between roots and some assumptions about the distance of water migration from soil to root. PRER was determined in conjunction with soil moisture extraction efficiency (SMEE). The presumed tolerant genotype (T) had higher TRL, TRS and PRER than the susceptible genotype (S), whilst the performance of the control genotype (I) was intermediate. Surprisingly, during a period of moderate water deficit, T had a lower SMEE than S, which was interpreted successfully with PRER, as the result of a better access to a large volume of soil and of a slower drying out of the soil around the roots. PRER appears as a helpful indicator for comparing or ranking genotypes, and for addressing better the complexity of the genetic variability of drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

df:

degrees of freedom

Eti :

root water extraction per soil layer i between two dates (cm3 d-1)

AET:

actual evapotranspiration (mm d-1)

PET:

potential evapotranspiration (mm d-1)

FTSW:

fraction of transpirable soil water (no dimension)

I:

control oil palm genotype with intermediate drought tolerance

PAW:

potential available water in soil (mm)

PRER:

potential root extraction ratio for water (no dimension)

r:

maximum distance of water migration to root surface area (cm)

R1:

primary root or coarse root

R2:

secondary root or medium root

R3:

tertiary root

R4:

quaternary root

(R3 + R4):

fine roots

RD:

average distance between roots (m)

RER:

root elongation rate (cm d-1)

RLD:

root length density (m m-3)

RSi :

total root surface area in the soil layer i

S:

oil palm genotype susceptible to drought

SMEE:

actual soil moisture extraction efficiency

\( {\theta_{{z_i}}} \) :

volumetric water content at soil layer z i (cm3 cm-3)

θ fcz :

volumetric water content at field capacity at soil layer z (cm3 cm-3)

T:

drought tolerant oil palm genotype

TRDM:

total root dry matter (kg m-2)

TRL:

total root length (km m-2)

TRS:

total root surface area (m2 m-2)

VPD:

vapor pressure deficit (kPa)

Vt :

total soil volume (m3)

Vu :

maximum soil volume available to root for water uptake (m3)

∆Si :

variation of water stock per soil layer i between two dates

Δz :

thickness of a soil layer between z n and z n−1depth (cm)

References

  • Adjahossou F, Vierra Da Silva J (1978) Teneur en glucides solubles et en amidon et résistance à la sécheresse chez le palmier à huile. Oléagineux 33(12):559–604

    Google Scholar 

  • Annerose D, Cornaire B (1994) Approche physiologique de l’adaptation à la sécheresse des espèces cultivées pour l'amélioration de la production en zones sèches. In: Reyniers F-N, Netoyo L (eds) Bilan hydrique agricole et sécheresse en Afrique tropicale. John Libbey Eurotext, Paris, pp 137–150

    Google Scholar 

  • Atkinson D (1986) The nutrient requirement of fruit trees: some current considerations. Adv in Plant Nutr 2:93–128

    Google Scholar 

  • Cao KF (2000) Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture. J Trop Ecol 16:101–116

    Article  Google Scholar 

  • Chopart JL (1996) Comparison of several methods of studying the maize deep root system under field conditions. In: Int. Soc. of Root Res. (Ed) 5th Symposium, Clemson University, South Carolina (USA), p 138

  • Chopart JL (1999) Relations entre état physique du sol, systèmes racinaires et fonctionnement hydrique du peuplement végétal: outils d’analyse in situ et exemples d’études en milieu tropical à risque climatique élevé. PhD Thesis, Univ. Joseph Fourier-Grenoble I, France (in French), p 115

  • Chopart JL, Payet N, Saint-Macary H, Vauclin M (2007) Is maize root growth affected by pig slurry? Application on a tropical acid soil. Plant Root 1:75–84

    Article  Google Scholar 

  • Cintra FD, Silvaleal M, Passos EEM (1992) Distribution du système racinaire des cocotiers nains. Oléagineux 47:225–234

    Google Scholar 

  • Corley RHV, Tinker PB (2003) The oil palm, 4th edn. Blackwell Science, Oxford, p 562

    Book  Google Scholar 

  • Cornaire B, Daniel C, Zuily-Fodil Y, Lamade E (1994) Le comportement du palmier à huile sous stress hydrique. Données du problème, premiers résultats et voies de recherche. Oléagineux 49:1–12

    Google Scholar 

  • Costa C, Dwyer LM, Hamilton RI, Hamel C, Nantais L, Smith DL (2000) A sampling method for measurement of large root systems with scanner-based image analysis. Agron J 92:621–627

    Article  Google Scholar 

  • Da Matta FM (2004) Exploring drought tolerance in coffee: a physiological approach with some insights for plant breeding. Braz J Plant Physiol 16(1):1–6

    Google Scholar 

  • Danjon F, Pot D, Raffin A, Courdier F (2000) Genetics of root architecture in 1- year—old Pinus pinaster measured with the WinRHIZO image analysis system: prelimary results. In: Stokes A (ed) The supporting roots of trees and woody plants: form, function and physiology, Vol. 87. Developments in plant and soil sciences. Kluwer Academic, Netherlands, pp 77–81

    Google Scholar 

  • Deery DM, Passioura JB, Condon JR, Katupitiya A (2009) Water uptake by a single plant: Analysis using experimentation and modeling. CRC for Irrigation Futures Irrigation Matters Series No. 01/09. February 2009

  • Dufrêne E, Saugier B (1993) Gas exchange of oil palm in relation to light, vapour pressure deficit, temperature and leaf age. Funct Ecol 7:97–104

    Article  Google Scholar 

  • Dufrêne E, Dubos B, Rey H, Quencez P, Saugier B (1992) Changes in evapotranspiration from oil palm stands (Elaeis guineesis Jacq.) exposed to seasonal soil water deficit. Acta Oecol 13:299–314

    Google Scholar 

  • Ehdaie B, Whitkus RW, Wains JG (2003) Root biomass, water-use efficiency and performance of wheat-rye translocations of chromosones 1 and 2 in spring bread wheat “Pavon bread wheat”. Crop Sci 43:710–717

    Article  Google Scholar 

  • FAO-UNESCO (1989) Carte mondiale des sols. Légende révisée. Rapport sur les ressources en sols du monde n° 60. FAO, Rome, p 125

    Google Scholar 

  • Gardner WR (1960) Dynamic aspects of water availability. Soil Sci 89:63–73

    Article  Google Scholar 

  • Habib R, Pagès L, Jordan MO, Simonneau T, Sébillotte M (1991) Approche à l’échelle du système racinaire de l’absorption hydro-minérale. Conséquences en matière de modélisation. Agron 11:623–643

    Article  Google Scholar 

  • Henson IE, Chai SH (1997) Analysis of oil palm productivity. II. Biomass, distribution, productivity and turnover of the root system. Elaeis 9:78–92

    Google Scholar 

  • Honda M (1978) Description of cellular pattern by Dirichlet domains: the two dimensional case. J Theor Biol 72:523–543

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Fry JD (1998) Root anatomical, physiological, and morphological responses to drought stress for tall Fescue cultivars. Crop Sci 38:1017–1022

    Article  Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport using physiological processes in global predictions. Trends Plant Sci 5:482–488

    Article  CAS  PubMed  Google Scholar 

  • Jourdan C, Rey H (1997a) Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant Soil 189:33–48

    Article  CAS  Google Scholar 

  • Jourdan C, Rey H (1997b) Modelling and simulation of the architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. II. Estimation of root parameters using the RACINES postprocessor. Plant Soil 190:235–246

    Article  CAS  Google Scholar 

  • Kalms JM, Vachaud G, Vauclin M (1982) Etude méthodologique de l’alimentation hydrique de deux variétés de riz pluvial à l’échelle d’une parcelle. Agron 2(9):871–883

    Article  Google Scholar 

  • Lang ARG, Gardner WR (1970) Limitation to water flow from soil to plants. Agron J 62:693–694

    Article  Google Scholar 

  • Maertens C, Blanchet R, Bosc M (1974) Influence de différents régimes hydriques sur l’absorption de l’eau et des éléments nutritifs par la culture. I Régimes hydriques, systèmes racinaires et modalités d’alimentation en eau. Ann Agron 25:575–586

    Google Scholar 

  • Maillard G, Daniel C, Ochs R (1974) Analyse des effets de la sécheresse sur le palmier à huile. Oléagineux 29(8–9):395–404

    Google Scholar 

  • Nelson PN, Banabas M, Scotter DR, Webb MJ (2006) Using soil water depletion to measure spatial distribution of root activity in oil palm (Elaeis guineensis Jacq.) plantations. Plant Soil 286:109–121

    Article  CAS  Google Scholar 

  • Nodichao L (2008) Biodiversité racinaire, absorption potassique et résistance à la sécheresse chez le palmier à huile (Elaeis guineensis Jacq.). PhD Thesis, Université Cocody Abidjan, Côte d'Ivoire (in French), p 316

  • Nouy B, Baudouin L, Djégui N, Omoré A (1999) Oil palm under limiting water supply conditions. Plantations Rech Développement 6(1):31–40

    Google Scholar 

  • Ouvrier M (1995) Etude du système racinaire du palmier à huile. Rapport interne IDEFOR-DPO. Côte d'Ivoire, Abidjan, p 20

    Google Scholar 

  • Penman HL (1948) Natural evaporation from open, water, bare soil and grass. Proc R Soc Lond A193:120–145

    Google Scholar 

  • Piche M (1872) Note sur l’atmismomètre, instrument destiné à mesurer l’évaporation. Bull. Hebdom. Assoc. Sci., France, p 193

  • Proffit APB, Berliner PR, Oosterhuis DM (1985) A comparative study of root distribution and water extraction efficiency by wheat grown under high frequency and low irrigation. Agron J 77:655–662

    Article  Google Scholar 

  • Régent Instruments Inc (2001) Mac/WinRHIZO. Introduction manual and reference manual. Québec, p 59

  • Ruer P (1967) Morphologie et anatomie du système radiculaire du palmier à huile. Oléagineux 22(10):595–599

    Google Scholar 

  • Salih A, Ali I, Lux A, Luxova M, Cohen Y, Sugimoto Y, Inanaga S (1999) Rooting, water uptake, and xylem structure adaptation to drought of two Sorghum cultivars. Crop Sci 39:168–173

    Article  Google Scholar 

  • Sinclair TR, Ludlow MM (1986) Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust J Plant Physiol 13:329–341

    Article  Google Scholar 

  • Smith BG (1989) The effects of soil water and atmospheric vapour pressure deficit on stomatal behaviour and photosynthesis in the oil palm. J Exp Bot 40:647–651

    Article  Google Scholar 

  • Snowdon P, Raison J, Keith H, Grierson P, Adams MA, Montagu K, Hui-quan B, Burrows W, Eamus D (2002) Protocol for sampling tree and stand biomass. NCAS Technical Report No. 31. Australian Greenhouse Office, Canberra

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    Article  CAS  PubMed  Google Scholar 

  • Tailliez B (1971) The root system of the oil palm on the San Alberto plantation in Colombia. Oléagineux 26:435–447

    Google Scholar 

  • Tardieu F (1988) Analysis of the spatial variability of maize root density. III Effect of wheel compaction on water extraction. Plant Soil 109:257–262

    Article  Google Scholar 

  • Tardieu F, Bruckler L, Lafolie F (1992) Root clumping may affect the root water potential and the resistance to soil-water transport. Plant Soil 140:291–301

    Article  Google Scholar 

  • Taylor HM, Klepper B (1978) Role of rooting characteristics in the supply of water to plant. Adv Agron 30:99–128

    Article  Google Scholar 

  • Thom AS, Thony JL, Vauclin M (1981) On the proper employment of evaporation pans and atmometers in estimating potential transpiration. Quart J R Met Soc 107:711–736

    Article  Google Scholar 

  • Tinker PB (1976) Soil requirements of the oil palm. In: Corley RHV, Hardon JJ, Wood BJ (eds) Oil palm research. Elsevier, Amsterdam, pp 165–181

    Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, New York

    Google Scholar 

  • Vachaud G, Dancette C, Sonko S, Thony JL (1978) Méthodes de caractérisation hydrodynamique in situ d’un sol non saturé. Application à deux types de sol du Sénégal en vue de la détermination des termes du bilan hydrique. Ann Agron 29:1–36

    Google Scholar 

  • Wiersum LK (1987) Activity of root systems of six plant species at different stages of development. Plant Soil 100:361–370

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Cooperation and Cultural Action Service at the French Embassy in Benin, Centre de Coopération Internationale en Recherche Agronomique pour le Développement and Institut National des Recherches Agricoles du Bénin (INRAB), for financial assistance that enabled this study to go ahead. We also thank the technicians at INRAB’s Centre de Recherches Agricoles Plantes Pérennes for their participation in field work, Peter Biggins for his kind help in the correction of this paper and three anonymous reviewers for providing helpful comments that greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Jourdan.

Additional information

Responsible Editor: Tibor Kalapos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nodichao, L., Chopart, JL., Roupsard, O. et al. Genotypic variability of oil palm root system distribution in the field. Consequences for water uptake. Plant Soil 341, 505–520 (2011). https://doi.org/10.1007/s11104-010-0663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0663-0

Keywords

Navigation