Skip to main content

Advertisement

Log in

How Uncontrolled Urban Expansion Increases the Contamination of the Titicaca Lake Basin (El Alto, La Paz, Bolivia)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cities in developing countries encounter rapid waves of social transformation and economic development where the environment is mostly a neglected aspect. The Katari watershed encompasses mining areas, El Alto city (one of the fastest growing urban areas in South America and the biggest in the Altiplano) as well as agricultural areas. Its outlet is Cohana Bay, one of the most polluted areas of Lake Titicaca. Here we propose an integrative approach (hydrological, physicochemical, chemical and bacterial data) to understand the pollution problem of this developing area, in which a variety of anthropogenic activities takes place. Both mining and urban areas appear to be sources of metal pollution. Nutrient and bacterial contaminations are mainly related to urban and industrial discharges. These situations have impacts in the basin from the mining area down to Cohana Bay of Lake Titicaca. Pollutant concentration patterns are highly influenced by seasonal hydrology variations. The poor quality of surface waters in the basin represents a risk for human and animal populations, as well as for the quality of aquifers located underneath El Alto city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahlfeld, F., & Schneider-Scherbina, A. (1964). Los Yacimientos Minerales y de hidrocarburos de Bolivia. Boletin No. 5. La Paz: Departamento Nacional de Geología; Ministerio de Minas y Petróleo.

    Google Scholar 

  • Alves, R. I. S., Sampaio, C. F., Nadal, M., Schuhmacher, M., Domingo, J. L., & Segura-Muñoz, S. I. (2014). Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks. Environmental Research, 133, 149–155. doi:10.1016/j.envres.2014.05.012.

    Article  CAS  Google Scholar 

  • Anton, D. J. (1993). Thirsty cities: urban environments and water supply in Latin America. IDRC.

  • Arbona, J. M., & Khol, B. (2004). City profile La Paz–El Alto. Elsevier, 21, 255–265.

  • Banks, D., Markland, H., Smith, P. V., Mendez, C., Rodriguez, J., Huerta, A., & Sæther, O. M. (2004). Distribution, salinity and pH dependence of elements in surface waters of the catchment areas of the Salars of Coipasa and Uyuni, Bolivian Altiplano. Journal of Geochemical Exploration, 84, 141–166. doi:10.1016/j.gexplo.2004.07.001.

    Article  CAS  Google Scholar 

  • Buxton, N., Escobar, M., Purkey, D., & Lima, N. (2013). Water scarcity, climate change and Bolivia: planning for climate uncertainties. Davis: Stockholm Environment Institute.

    Google Scholar 

  • Caballero, Y., Jomelli, V., Chevallier, P., & Ribstein, P. (2002). Hydrological characteristics of slope deposits in high tropical mountains (Cordillera Real, Bolivia). Catena, 47, 101–106.

    Article  Google Scholar 

  • Chiqui, F. R. R. (2001). Evaluación del Río Pallina, en relación a su calidad de aguas en la zona urbana de Viacha. La Paz.

  • Chiron, S., & Duwig, C. (2016). Biotic nitrosation of diclofenac in a soil aquifer system (Katari watershed, Bolivia). Science of the Total Environment, 565, 473–480.

    Article  CAS  Google Scholar 

  • Chudnoff, S. M. (2006). A water quality assessment of the Rio Katari river and its principle tributaries, Bolivia (B.S. Earth and Environmental Science - Geology Option). New Mexico Institute of Mining and Technology.

  • Clapperton, C. M. (1993). Quaternary geology and geomorphology of South America. Amsterdam: Elsevier.

    Google Scholar 

  • Condom, T. (2002). Dynamiques d’extension lacustre et glaciaire associées aux modifications du climat dans les Andes Centrales. (PHD Science of the Earth). Docteur de l’Université Paris VI, Paris.

  • Coudrain-Ribstein, A., Olive, P., Quintanilla, J., Sondag, F., Cahuaya, D. (1995). Salinity and isotopic dynamics of the groundwater resources on the Bolivian Altiplano. Application of Tracers in Arid Zone Hydrology, Proceedings of the Vienna Symposium. IAHS Publication, 232, 267–276.

  • E.U. (2009). European communities environmental objectives (surface waters) regulations. S.I. No. 272 of 2009. FAO.

  • FAO (2005). FAO, land and water digital media series n5; soil and terrain database for Latin America and the Carribean—1:5 million scale.

  • Fewtrell, L., & Bartram, J. (2001). Water quality guidelines, standards, and health: assessment of risk and risk management for water-related infectious disease. London: IWA Publications.

    Google Scholar 

  • Fonturbel, F. (2005). Physico-chemical and biological indicators of the eutrophication process at Titicaca Lake (Bolivia). Ecología Aplicada, 2005, 135–141.

    Google Scholar 

  • GEOBOL (1995a). Hoja geológica La Paz, #5944; escala 1:100000. Carta Geológica de Bolivia, Servicio Geológico de Bolivia.

  • GEOBOL (1995b). Hoja geológica Milluni, #5945; escala 1:100000. Carta Geológica de Bolivia, Servicio Geológico de Bolivia.

  • Gomez, E. (2012). Caracterisacion hidrogeoquimica del sistema acuífero Purapurani (El Alto). Master thesis, Universidad Mayor Real Pontificada de San Francisco Javier de Chuquisaca.

  • Guédron, S., Duwig, C., Prado, B. L., Point, D., Flores, M. G., & Siebe, C. (2014). (Methyl)mercury, arsenic, and lead contamination of the world’s largest wastewater irrigation system: the Mezquital Valley (Hidalgo State—Mexico). Water, Air, and Soil Pollution, 225, 2045. doi:10.1007/s11270-014-2045-3.

    Article  Google Scholar 

  • Guzmán, J. M., Rodríguez, J., Martínez, J., Contreras, J. M., & González, D. (2006). The demography of Latin America and the Caribbean since 1950/La Demografia de América latina y del Caribe Desde 1950/La démographie de l’Amérique Latine et des Caraïbes depuis 1950. Population, English edition, 61, 519–620.

    Article  Google Scholar 

  • Hardy, S., Valton, C., Guislain, S., & Larrazãbal Cãrdova, N. (2015). Atlas de la vulnerabilidad de la aglomeración de La Paz. France: IRD Editions.

    Google Scholar 

  • Harou, P. (1995). Wetlands economics and land use. In: Environmental and land use issues, CIHEAM-EAAE. 540 p

  • IDH-UMSA (2014). Manejo de la Caracterización del Recurso Suelo Agrícola y Agua para el Consumo Humano/Riego del Municipio de Colquencha, La Paz - Bolivia.

  • IDH-UMSA (2013). Valoración de metales pesados en la cuenca del Río Katari y su impacto en la calidad de vida del área de influencia. La Paz-Bolivia.

  • Jauregui, J. (1969). Estudio geológico minero de la región Milluni—Zongo. Tesis de grado, Facultad de Ciencias Geológicas U.M.S.A. (T-406).

  • Jiménez, L. F. (1996). La experiencia de ajuste durante la década de los ochenta en Latinoamérica, sus consecuencias distributivas y el diseño de políticas sociales. Desarrollo con Equidad. CEPAL. Santiago de Chile.

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338, 3–14. doi:10.1016/j.scitotenv.2004.09.002.

    Article  CAS  Google Scholar 

  • Lassabatere, L., Spadini, L., Delolme, C., Février, L., Galvez Cloutier, R., & Winiarski, T. (2007). Concomitant Zn—Cd and Pb retention in a carbonated fluvio-glacial deposit under both static and dynamic conditions. Chemosphere, 69, 1499–1508.

    Article  CAS  Google Scholar 

  • Limpias, F. (2010). Impacto de la ciudad de El Alto en el campo de pozos Tilata. Tesis de Postgrado. Universidad Mayor Real y Pontificia de San Francisco Xavier de Chuquisaca.

  • Loza Herrera, S., Meneses, R., & Anthelme, F. (2015). Comunidades vegetales de los bofedales de la Cordillera Real (Bolivia) bajo el calentamiento global. Ecologia en Bolivia, 50, 39–56.

    Google Scholar 

  • Mason, C. (2002). Biology of freshwater pollution (4th ed.). New York: Prentice Hall.

    Google Scholar 

  • Mason, J. P., Sebree, S. K., Quinn, T. L. (2005). Monitoring-well network and sampling design for ground-water quality, Wind River Indian Reservation, Wyoming. US Department of the Interior, US Geological Survey.

  • Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, 25, 1414–1419. doi:10.1021/es00020a008.

    Article  CAS  Google Scholar 

  • Mazurek, H. (2012). El censo en Bolivia, una herramienta de desarrollo. T’inkazos, 15; 32: Coordination du numéro spécial sur les recensements.

  • McMichael, A. J. (2000). The urban environment and health in a world of increasing globalization: issues for developing countries. Bulletin of the World Health Organization, 78, 1117–1126.

    CAS  Google Scholar 

  • MEEDD & Agences de l’eau (2003). Système d’évaluation de la qualité de l’eau des cours d’eau. Rapport de presentation SEQ-Eau (Version 2).

  • MMAyA (2013). Planes Maestros Metropolitanos de Agua Potable y Saneamiento de Cochabamba, La Paz y El Alto, Santa Cruz y el Valle Central de Tarija (Bolivia). La Paz.

  • MMAyA. (2011). Informe final Proyecto Plan Director Cuenca KAtari, Fase 1. La Paz: Viceministerio de Recursos Hidricos y Riego.

    Google Scholar 

  • Monroy, M., Maceda-Veiga, A., & de Sostoa, A. (2014). Metal concentration in water, sediment and four fish species from Lake Titicaca reveals a large-scale environmental concern. Science of the Total Environment, 487, 233–244. doi:10.1016/j.scitotenv.2014.03.134.

    Article  CAS  Google Scholar 

  • Mourguiart, P., Wirrmann, D., Fournier, M., & Servant, M. (1992). Reconstruction quantitative des niveaux du petit lac Titicaca au cours de l’Holocene. Compte Rendu de l’Académie de Sciences de Paris, 315, 875–880.

    Google Scholar 

  • Muriel, C. (1967). Estudio geológico y mineralógico de la región de Milluni. Tesis de grado, Facutlad de Ciencias Geológicas U.M.S.A. (T-80).

  • Naicker, K., Cukrowska, E., & McCarthy, T. (2003). Acid mine drainage arising from gold mining activity in Johannesburg, South Africa and environs. Environmental Pollution, 122, 29–40. doi:10.1016/S0269-7491(02)00281-6.

  • NorthCote, T. G., Morales, S. P., Zea, W., Vazquez, M. E. (1989). Effects of eutrophication on physical conditions. In: Pollution in Lake Titicaca, Peru. Westwater Research Centre, Univ. Dril. Columbia, Vancouver, pp. 19–31.

  • Perez, W. (2015). Dos toneladas de ranas, peces y aves mueren en el Titicaca. La Razon 26/04/2015. La Paz

  • PNUMA (2011). Perspectivas del medio ambiente en el sistema hidrico Titicaca-Desaguadero-Poopo-Salar de Coipasa (TDPS). PNUMA.

  • PNUMA (2008). Perspectivas del Medio Ambiente Urbano: GEO El Alto. Proyecto GEO ciudades.

  • Ramos Ramos, O. E., Rötting, T. S., French, M., Sracek, O., Bundschuh, J., Quintanilla, J., & Bhattacharya, P. (2014). Geochemical processes controlling mobilization of arsenic and trace elements in shallow aquifers and surface waters in the Antequera and Poopó mining regions, Bolivian Altiplano. Journal of Hydrology, 518, 421–433. doi:10.1016/j.jhydrol.2014.08.019.

    Article  CAS  Google Scholar 

  • Reglamentos a la ley de medio ambiente (1996). Gaceta oficial de Bolivia. La Paz.

  • Ribera Arismendi, M. A. (2010). La Bahía de Cohana. Actualización 2009–2010. –La Paz: Serie de estudios de caso sobre problemáticas socio ambientales en Bolivia No 1. LIDEMA. 78p.

  • Salvarredy-Aranguren, M. M., Probst, A., Roulet, M., & Isaure, M.-P. (2008). Contamination of surface waters by mining wastes in the Milluni Valley (Cordillera Real, Bolivia): mineralogical and hydrological influences. Applied Geochemistry, 23, 1299–1324. doi:10.1016/j.apgeochem.2007.11.019.

    Article  CAS  Google Scholar 

  • SENAMHI (2015). Servicio nacional de hidrologia y metrologia. La Paz.

  • Smolders, A. J. P., Guerrero Hiza, M. A., van der Velde, G., & Roelofs, J. G. M. (2002). Dynamics of discharge, sediment transport, heavy metal pollution and Sabalo (Prochilodus lineatus) catches in the lower Pilcomayo river (Bolivia). River Research and Applications, 18, 415–427. doi:10.1002/rra.690.

    Article  Google Scholar 

  • Sullivan, A. B., & Drever, J. I. (2001). Spatiotemporal variability in stream chemistry in a high-elevation catchment affected by mine drainage. Journal of Hydrology, 252, 237–250.

    Article  CAS  Google Scholar 

  • Soruco, A. (2012). Medio siglo de fluctuaciones glaciares en la Cordillera Real y sus efectos hidrologicos en la ciudad de La Paz. La Paz: Institute de Recherche pour le Développement Editions, IRD.

    Google Scholar 

  • Sosa, A. J., Byarugaba, D. K., Amábile-Cuevas, C. F., Hsueh, P.-R., Kariuki, S., & Okeke, I. N. (Eds.). (2010). Antimicrobial resistance in developing countries. New York: Springer New York.

  • Strosnider, W. H. J., Llanos López, F. S., & Nairn, R. W. (2011). Acid mine drainage at Cerro Rico de Potosí I: unabated high-strength discharges reflect a five century legacy of mining. Environment and Earth Science, 64, 899–910. doi:10.1007/s12665-011-0996-x.

    Article  CAS  Google Scholar 

  • Tekile, A., Kim, I., & Kim, J. (2015). Mini-review on river eutrophication and bottom improvement techniques, with special emphasis on the Nakdong River. Journal of Environmental Sciences, 30, 113–121. doi:10.1016/j.jes.2014.10.014.

    Article  Google Scholar 

  • Tícona, W., Blanco, M., Ticona, J., & Cabrera, S. (2012). Investigación y desarrollo de materiales arcillosos parte I: Caracterización química, mineralógica y estructural de arcillas de Viacha y Kellani. Revista Boliviana de Quimica, 29, 139–146.

    Google Scholar 

  • UAC Batallas (2010). Diagnostico de salud de la poblacion de las comunidades de Cohana. Municipios de Pucarani y Puerto Pérez Provincia Los Andes.

  • WHO. (2011). Guidelines for drinking-water quality. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (1996). Health criteria and other supporting information. Geneva: World Health Organization.

    Google Scholar 

  • Zeballos, A. (2009). Aplicación de los recursos no-metálicos de la localidad de Micaya, Provincia Aroma, Departamento de La Paz. (Tesis de grado). La Paz: Facultad de Ciencias Geológicas, Carrera de Ciencias Geológicas, Universidad Mayor de San Andrés.

    Google Scholar 

Download references

Acknowledgements

This project was partly funded by LABEX OSUG@2020, ANR grant no. ANR-10-LABX-56 (financed by the Future Investments programme launched by the French government and implemented by the ANR). We thank the University of San Andres (UMSA, La Paz) and the National Council for Science and Technology (CONACYT, Mexico) for the support given to this project through PhD funding. We thank the Bolivian SENAMHI (Servicio Nacional de Meteorología e Hidrología) for their technical assistance. We also acknowledge the French National research programme EC2CO Ecodyn of CNRS-INSU for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Duwig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 52 kb)

ESM 2

(DOCX 751 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archundia, D., Duwig, C., Spadini, L. et al. How Uncontrolled Urban Expansion Increases the Contamination of the Titicaca Lake Basin (El Alto, La Paz, Bolivia). Water Air Soil Pollut 228, 44 (2017). https://doi.org/10.1007/s11270-016-3217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-3217-0

Keywords

Navigation