Skip to main content

Advertisement

Log in

Impact of anthropogenic activities on water quality and plankton communities in the Day River (Red River Delta, Vietnam)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Planktons are a major component of food web structure in aquatic ecosystems. Their distribution and community structure are driven by the combination and interactions between physical, chemical, and biological factors within the environment. In the present study, water quality and the community structure of phytoplankton and zooplankton were monthly investigated from January to December 2015 at 11 sampling sites along the gradient course of the Day River (Red River Delta, northern Vietnam). The study demonstrated that the Day River was eutrophic with the average values of total phosphorus concentration 0.17 mg/L, total nitrogen concentration 1.98 mg/L, and Chl a 54 μg/L. Microscopic plankton analysis showed that phytoplankton comprised 87 species belonging to seven groups in which Chlorophyceae, Bacillariophyceae, and Cyanobacteria accounted for the most important constituents of the river’s phytoplankton assemblage. A total 53 zooplankton species belonging to three main groups including Copepoda, Cladocera, and Rotatoria were identified. Plankton biomass values were greatest in rainy season (3002.10-3 cell/L for phytoplankton and 12.573 individuals/m3 for zooplankton). Using principal correspondence and Pearson correlation analyses, it was found that the Day River was divided into three main site groups based on water quality and characteristics of plankton community. Temperature and nutrients (total phosphorus and total nitrogen) are key factors regulating plankton abundance and distribution in the Day River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • American Public Health Association (APHA) (1999) Standard methods for the examination of water and wastewater. 20th Edition, APHA, Washington DC, 1268 p.

  • Bahnwart, M., Hübener, T., & Schubert, H. (1999). Downstream changes in phytoplankton composition and biomass in a lowland river–lake system (Warnow River, Germany). Hydrobiologia, 391, 99–111.

    Article  Google Scholar 

  • Boxshall, G. A., & Halsey, S. H. (2004). An introduction to copepod diversity (Vol. 166, pp. 1–966). London: Ray Society.

    Google Scholar 

  • Brett, M. T., & Müller-Navarra, D. C. (1997). The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology, 38(3), 483–499. https://doi.org/10.1046/j.1365-2427.1997.00220.x.

    Article  CAS  Google Scholar 

  • Bussi, G., Whitehead, P. G., Bowes, M. J., Read, D. S., Prudhomme, C. P., & Dadson, S. J. (2016). Impacts of climate change, land-use change and phosphorus reduction on phytoplankton in the River Thames (UK). Science of the Total Environment, 572, 1507–1519. https://doi.org/10.1016/j.scitotenv.2016.02.109.

    Article  CAS  Google Scholar 

  • Cisneros, K. O., Smit, A. J., Laudien, J., & Schoeman, D. S. (2011). Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure. PLoS One, 6(8), e23724. https://doi.org/10.1371/journal.pone.0023724.

    Article  CAS  Google Scholar 

  • Czerniawski, R., & Domagala, J. (2011). Zooplankton communities of two lake outlets in relation to abiotic factors. Open Life Sciences, 5, 240–255.

    Google Scholar 

  • D’Alelio, D., Montresor, M., Mazzocchi, M.G., Margiotta, F., Sarno, D& d’Alcalà, M.R (2016). Plankton food-webs: to what extent can they be simplified?Advances in Oceanography and Limnology,7, 67–92.

  • Dang, N.T&HoT.H (2001). Fresh water crustacean. Fauna of Vietnam Vol 5, Scientific and Technical Publishing House, Ha Noi.

  • Dang, N. T., Thai, T. B., & Pham, V. M. (1980). Taxonomists invertebrate freshwater North Vietnam. Ha Noi: Scientific and technical Publishing House.

    Google Scholar 

  • Davis, T.W., Berry, D.L., Boyer, G.L & Gobler, C.J. (2009). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8, 715–725.

  • De-Domitrovic, Y. Z., Devercelli, M., & Forastier, M. E. (2014). Phytoplankton of the Paraguay and Bermejo rivers. Advances in Limnology, 65, 67–80. https://doi.org/10.1127/1612-166X/2014/0065-0034.

    Article  Google Scholar 

  • Descy, J. P (1987). Phytoplankton composition and dynamics in the nver Meuse (Belgium). Archiv für Hydrobiologie, Supplement, 78, 225–245.

  • De-Sousa, B. H., Becker, H., & Melo, V. M. M. (2016). Influence of river discharge on phytoplankton structure and nutrient concentrations in four tropical semiarid estuaries. Brazilian Journal of Oceanography, 64, 37–48.

    Google Scholar 

  • Dirican, S., Haldun, M., & Suleyman, C. (2009). Some physicochemical characteristics and rotifers of Camligoze Dam Lake, Susehri, Sivas, Turkey. Journal of Animal and Veterinary Advances, 8, 715–719.

    Google Scholar 

  • Do, T. N., Trinh, A. D., & Nishida, K. (2014). Modification of uncertainty analysis in adapted material flow analysis: case study of nitrogen flows in the Day-Nhue River Basin, Vietnam. Resources, Conservation and Recycling, 88, 67–75. https://doi.org/10.1016/j.resconrec.2014.04.006.

    Article  Google Scholar 

  • Duong. (1996). Taxonomy of cyanobacteria of Vietnam. Hanoi: Agriculture Publishing House.

    Google Scholar 

  • Duong, D. T., & Vo, H. (1997). Freshwater algae of Vietnam. Oder: Chlorococcales. Hanoi: Agriculture Publishing House 503p.

    Google Scholar 

  • Duong, T. T., Coste, M., Feurtet-Mazel, A., Dang, D. K., Gold, C., Park, Y. S., & Boudou, A. (2006). Impact of urban pollution from the Hanoi area on benthic diatom communities collected from the Red, Nhue and Tolich rivers (Vietnam). Hydrobiologia, 56, 201–216.

    Article  Google Scholar 

  • Duong, T. T., Coste, M., Feurtet-Mazel, A., Dang, D. K., Ho, T. C., & Le, T. P. Q. (2012). Responses and structural recovery of periphytic diatom communities after short-term disturbance in some rivers (Hanoi, Vietnam). Journal of Applied Phycology, 24(5), 1053–1065. https://doi.org/10.1007/s10811-011-9733-9.

    Article  CAS  Google Scholar 

  • Ezekiel, E. N., Ogamba, E. N., & Abowei, J. F. N. (2011). The distribution and seasonality of phytoplankton in Sombreiro River, Niger Delta, Nigeria. Asian Journal of Agricultural Science, 3, 192–199.

    Google Scholar 

  • Falconer, I. R. (1996). Potential impact on human health of toxic cyanobacteria. Phycologia, 35(6S), 6–11. https://doi.org/10.2216/i0031-8884-35-6S-6.1.

    Article  Google Scholar 

  • Fetahia, T., Mengistoua, S., & Schagerl, M. (2011). Zooplankton community structure and ecology of the tropical-highland Lake Hayq Ethiopia. Limnologica, 41(4), 389–397. https://doi.org/10.1016/j.limno.2011.06.002.

    Article  Google Scholar 

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 28, 237–240.

    Article  Google Scholar 

  • Glibert, P. M. (2012). Ecological stoichiometry and its implications for aquatic ecosystem sustainability. Current Opinion in Environmental Sustainability, 4(3), 272–277. https://doi.org/10.1016/j.cosust.2012.05.009.

    Article  Google Scholar 

  • Góme, N., & Bauer, D. E. (1998). Phytoplankton from the southern coastal fringe of the Río de la Plata (Buenos Aires, Argentina). Hydrobiologia, 380(1/3), 1–8. https://doi.org/10.1023/A:1003133106904.

    Article  Google Scholar 

  • Huang, L., Jian, W., Song, X., Huang, X., Liu, S., Qian, P., Yin, K., & Wu, M. (2004). Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Marine Pollution Bulletin, 49(7-8), 588–596. https://doi.org/10.1016/j.marpolbul.2004.03.015.

    Article  CAS  Google Scholar 

  • Joung, S. H., Oh, H. M., Ko, S. R & Ahn, C. Y. (2011). Correlations between environmental factors and toxic and non-toxic Microcystis dynamics during bloom in Daechung Reservoir, Korea. Harmful, 10, 188–193.

  • Ikhuoriah, S. O., Oronsaye, C. G., & Adebanjo, I. A. (2015). Zooplankton communities of the river Ossiomo, Ologbo, Niger delta, Nigeria. Animal Research International, 12, 2249–2259.

    Google Scholar 

  • Isbell, F., Reich, P. B., Tilman, D., Hobbie, S. E., Polasky, S., & Binder, S. (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences, 110(29), 11911–11916. https://doi.org/10.1073/pnas.1310880110.

    Article  CAS  Google Scholar 

  • Jin, L., Wu, H., & Chen, M. (2011). Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica, 41, 48–56.

    Article  Google Scholar 

  • Karlson, B., Cusack, C., & Bresnan, E.(2010). Microscopic and molecular methods for quantitative phytoplankton analysis. IOC Manuals and Guides (vol 55, pp. 114). Paris: UNESCO.

  • Komárek, J., & Anagnostidis, K. (1989). Modern approach to the classification system of Cyanophytes 4-Nostocales. Archiv fur Hydrobiologie – Supplement, 82, 247–345.

    Google Scholar 

  • Komárek, J., & Anagnostidis, K. (1999). Cyanoprokaryota. 1. Chroococcales. In H. Ettl, G. Gärtner, H. Heynig, D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa 19/1 (p. 548). Jena: Fischer Ver lag.

  • Komárek, J., & Anagnostidis, K. (2005). Cyanoprokaryota -2. Teil/2nd part: Oscillatoriales. In B. Büdel, L. Krienitz, G. Gärtner, & M. Schagerl (Eds.), Süßwasserflora von Mitteleuropa 19/2 (p. 759). Heidelberg: Elsevier/Spektrum.

  • Kotut, K., Ballot, A., Wiegand, C., & Krienitz, L. (2010). Toxic cyanobacteria at Nakuru sewage oxidation ponds: a potential threat to wildlife. Limnologica, 40(1), 47–53. https://doi.org/10.1016/j.limno.2009.01.003.

    Article  CAS  Google Scholar 

  • Krammer, K.,&Lange-Betarlot, H. (1986–1991). Bacillariophyceae. 1.Teil: Naviculaceae. 876 p; 2. Teil : Bacillariaceae, Epithemiaceae, Surirellaceae, 596 p; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 p; 4. Teil : Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. 437 p. In: H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer, (Eds.), Süßwasserflora von Mitteleuropa. Stuttgart: Gustav Fischer Verlag, 2485p.

  • Kshirsagar, A. D., Ahire, M. L., & Gunale, V. R. (2012). Phytoplankton diversity related to pollution from Mula River at Pune City. Terrestrial & Aquatic Environmental Toxicology, 6, 136–142.

    Google Scholar 

  • Kutikova, L.A. (1970). Kolovratki Fauna SSSR. In Fauna USSR, (vol. 104, p. 744). Leningrad: Akademia Nauk.

  • Lancelot, C., & Muylaert, K. (2011). Trends in estuarine phytoplankton ecology. In E. Wolanski & D. Mclusky (Eds.), Treatise on estuarine and coastal science (pp. 5–15). Waltham: Academic Press. https://doi.org/10.1016/B978-0-12-374711-2.00703-8.

    Chapter  Google Scholar 

  • Lang, K. (1948). Monographie der harpacticiden, H. Ohlsson, Lund. 2 vols, 1682p.

  • Li, Q. P., Dong, Y., & Wang, Y. (2016). Phytoplankton dynamics driven by vertical nutrient fluxes during the spring inter-monsoon period in the northeastern South China Sea. Biogeosciences, 13(2), 455–466. https://doi.org/10.5194/bg-13-455-2016.

    Article  CAS  Google Scholar 

  • Litchman, E., Ohman, M. D., & Kiørboe, T. (2013). Trait-based approaches to zooplankton communities. Journal PlanktonRessearch, 35(3), 473–484. https://doi.org/10.1093/plankt/fbt019.

    Google Scholar 

  • Lucas, L., Cloern, J. E., Thompson, J. K., Stacey, M. T., & Koseff, J. R. (2016). Bivalve grazing can shape phytoplankton communities. Frontiers in Marine Science, 3, 14. https://doi.org/10.3389/fmars.2016.00014.

    Article  Google Scholar 

  • Lung’ayia, H. B. O., M’harzi, A., Tackx, M., Gichuki, J., & Symoens, J. J. (2000). Phytoplankton community structure and environment in the Kenyan waters of Lake Victoria. Freshwater Biology, 43(4), 529–543. https://doi.org/10.1046/j.1365-2427.2000.t01-1-00525.x.

    Article  Google Scholar 

  • Luu, T.N.M. (2010). Water quality and nutrient transfer in the continuum from the upstream Red River Basin to the Delta: budget and modelling. PhD Thesis of Pierre and Marie Curie University and Vietnam Academy of Science and Technology, 199 p.

  • Luu, T. N. M., Garnier, J., Billen, G., Orange, D., Nemery, J., Le, T. P. Q., Tran, H. T., & Le, L. A. (2010). Hydrological regime and water budget of the Red River Delta (Northern Vietnam). Journal of Asian Earth Sciences, 37(3), 219–228. https://doi.org/10.1016/j.jseaes.2009.08.004.

    Article  Google Scholar 

  • Luu, T. N., Garnier, G., Billen, G., Le, T. P. Q., Nemery, J., Orange, D., & Le, L. A. (2012). N, P, Si budgets for the Red River Delta (northern Vietnam): how the delta affects river nutrient delivery to the sea. Biogeochemistry, 107(1-3), 241–259. https://doi.org/10.1007/s10533-010-9549-8.

    Article  CAS  Google Scholar 

  • Mariania, O., Andersen, K. H., Visser, W. A., Barton, A. D., & Kiørboe, K. (2013). Control of plankton seasonal succession by adaptive grazing. Limnology and Oceanography, 58(1), 173–184. https://doi.org/10.4319/lo.2013.58.1.0173.

    Article  Google Scholar 

  • Marques, S.C., Azeiteiro, U.M., Leandro, S.M., Queiroga, H., Primo, A.L., Martinho, F., Viegas, I & Pardal, M. A (2008). Predicting zooplankton response to environmental changes in a temperate estuarine ecosystem. Marine Biology, 155, 531–541.

  • Matos, J. B., Sodré, D. K. L., da Costa, K. G., Pereira, L. C. C., & da Costa, R. M. (2011). Spatial and temporal variation in the composition and biomass of phytoplankton in an Amazonian estuary. Journal of Coastal Research, 64, 1525–1529.

    Google Scholar 

  • MEA. (2003). Millenium ecosystem assessment: ecosystems and human well-being (Vol. 200, 266p). Washington, DC: Island Press.

    Google Scholar 

  • Mitrovic, S. M., Westhorpe, D. P., Kobayyashi, T., Baldwin, D. S., Ryan, D., & Hitchook, J. N. (2014). Short-term changes in zooplankton density and community structure in response to different sources of dissolved organic carbon in an unconstrained lowland river: evidence for food web support. Journal of Plankton Ressearch, 36(6), 1488–1500. https://doi.org/10.1093/plankt/fbu072.

    Article  Google Scholar 

  • Neto, A. J. G., da Silva, L. C., Saggio, A. A., & Rocha, O. (2014). Zooplankton communities as eutrophication bioindicators in tropical reservoirs. Biota Neotropica, 14, e20140018.

    Google Scholar 

  • Nghiem, X. A., Le, T. P. Q., Vu, H. H., Luu, T. N. M., & Duong, T. T. (2010). The wastewater quality from several industrial production branches and traditional production villages in the Day-Nhue river basin, North Vietnam. VNU Journal Science Earth Science, 26, 1–7.

    Google Scholar 

  • Ngodhe, S. O., Raburu, P. O., Arara, B. K., Orwa, P. O., & Otieno, A. A. (2013). Spatio-temporal variations in phytoplankton community structure in small water bodies within Lake Victoria basin, Kenya. African Journal of Environmental Science and Technology, 7, 862–873.

    Google Scholar 

  • Nguyen, V.C. (2005). Final Project Report. Establishment of future plan for environmental protection of the Day-Nhue watershed. Institute of Geography. Vietnam Academy of Science and Technology, 400 p.

  • Nweze, N. O. (2006). Seasonal variations in phytoplankton in Ogelube Lake, a small natural West African Lake. Lakes and Reservoirs: Research and Management, 11(2), 63–72. https://doi.org/10.1111/j.1440-1770.2006.00292.x.

    Article  Google Scholar 

  • O’Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A., & Bruno, J. F. (2009). Warming and resource availability shift food web structure and metabolism. PLoS Biology, 7(8), e1000178. https://doi.org/10.1371/journal.pbio.1000178.

    Article  Google Scholar 

  • O’Farrel, I., & Izaguirre, I. (1994). Phytoplankton ecology and limnology of the river Uruguay Lower Basin (Argentina). Archiv für Hydrobiologie, l1, 155–179.

    Google Scholar 

  • OECD. (1982). Eutrophication of waters—monitoring, assessment and control. Paris: Organization for Economic Cooperation and Development.

    Google Scholar 

  • Orange, D., Luu, T. N. M., Le, T. P. Q., Tran, H. T., Nemery, J., Le, L. A., & Billen, G. (2013). Water balance and nutrient delivery in a densely populated delta for a future sustainable environment. (Vol. 358, pp. 196–202). England: Coll. Red Books, International Association of Hydrological Sciences.

    Google Scholar 

  • Paczkowska, J., Rowe, O. F., Schlüter, L., Legrand, C., Karlson, B., & Andersson, A. (2017). Allochthonous matter: an important factor shaping the phytoplankton community in the Baltic Sea. Journal of Plankton Research, 39(1), 23–34. https://doi.org/10.1093/plankt/fbw081.

    Article  CAS  Google Scholar 

  • Padmanabha, B., & Belaghi, S. L. (2008). Ostracods as indicators of pollution in Lake Mysore. Journal of Environmental Biology, 29(3), 415–418.

    CAS  Google Scholar 

  • Paerl, H.W. & Huisman, J. (2008). Blooms Like It Hot. Science, 320, 57–58.

  • Paerl, H. W., Joyner, J. J., Joyner, A. R., Arthur, K., Paul, V. J., O’Neil, J. M., & Heil, C. A. (2008). Co-occurrence of dinoflagellate and cyanobacterial harmful algal blooms in southwest Florida coastal waters: a case for dual nutrient (N and P) input controls. The Marine Ecology Progress Series, 371, 143–153. https://doi.org/10.3354/meps07681.

    Article  CAS  Google Scholar 

  • Paerl, H.W., Rossignol, K.L., Hall N.S., Peierls, B.L & Wetz , M.S (2010). Phytoplankton community indicators of short- and long-term ecological change in the anthropogenically and climatically impacted Neuse River Estuary, North Carolina, USA. Estuaries and Coasts, 33, 485–497.

  • Paerl, H. W., Hall, N. S., Peierls, B. L., & Rossignol, K. (2014). Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuaries and Coasts, 37(2), 243–258. https://doi.org/10.1007/s12237-014-9773-x.

    Article  Google Scholar 

  • Pham, T. M. H., Suthipong, S., & Kim, K. D. (2010). Anthropogenic influence on surface water quality of the Nhue and Day sub-river systems in Vietnam. Environmental Geochemistry and Health, 32, 227–236.

    Article  Google Scholar 

  • Pham, H. G., Harada, H., Fujii, S., Nguyen, P. H. L., Huynh, T. H., Pham, N. A., & Tanaka, S. (2015). Transition of fertilizer application and agricultural pollution loads: a case study in the Nhue-Day River basin. Water Science and Technology, 72, 1072–1081.

    Article  Google Scholar 

  • Phan, V.M., & Nguyen, D.T. (2013). Using zooplankton, phytoplankton and zoobenthod as bio-indicators for assessment of the water quality in confluence of Nhue Day rivers in Hanam province. National Conference on Ecology and Biology resource 5th: 1463–1467.

  • Pick, F. R., & Lean, D. R. S (1987). The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. New Zealand Journal of Marine and Freshwater Research, 21, 425–434.

  • Reddy, R.Y. (1994). Copepoda: Calanoida: Diaptomidae. Key to the genera Heliodiaptomus, Allodiaptomus, Neodiaptomus, Phyllodiaptomus, Eodiaptomus, Arctodiaptomus and Sinodiaptomus. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World 5. In H. J. F. Dumont (Ed.), The Hague (p. 221). the Netherlands: SPB Academic Publishing.

  • Reynolds, C. S. (2006). The ecology of phytoplankton. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511542145.

    Book  Google Scholar 

  • Reynolds, C. S., & Descy, J. P. (1996). The production, biomass and structure of phytoplankton in large rivers. Archiv für Hydrobiologie, 113, 161–187.

    Google Scholar 

  • Rieman, B.E., Isaak, D.J (2010). Climate change, aquatic ecosystems, and fishes in the Rocky Mountain West: implications and alternatives for management. Gen. Tech. Rep. RMRS-GTR-250. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 46p.

  • Sabo, E., Roy, D., Hamilton, P.B., Hehanussa, E.H., McNeely, R& Haffner, G.D (2008). The plankton community of Lake Matano: factors regulating plankton composition and relative abundance in an ancient, tropical lake of Indonesia. Hydrobiologia, 615, 225–235, 1, DOI: https://doi.org/10.1007/s10750-008-9560-4.

  • Sailley, S. F., Polimene, L., & Mitra, A. (2015). Impact of zooplankton food selectivity on plankton dynamics and nutrient cycling. Journal of Plankton Research, 37(3), 519–529. https://doi.org/10.1093/plankt/fbv020.

    Article  CAS  Google Scholar 

  • Salmaso, N. (2000). Factors affecting the seasonality and distribution of cyanobacteria and chlorophytes: a case study from the large lakes south of the alps, with special reference to Lake Garda. Hydrobiologia, 438(1/3), 43–63. https://doi.org/10.1023/A:1004157828049.

    Article  CAS  Google Scholar 

  • Seitz, R. D., Dauer, D. M., & Llansó, R. J. (2009). Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. Journal of Experimental Marine Biology and Ecology, 381, S4–S12. https://doi.org/10.1016/j.jembe.2009.07.004.

    Article  Google Scholar 

  • Shen, C. J. (1979). Freshwater Copepoda. Fauna Sinica, Crustacea (450p). Beijing: Science Press.

    Google Scholar 

  • Sekadende, B. C., Lyimo, T. J., & Kurmayer, R. (2005) Microcystin production by cyanobacteria in the Mwanza Gulf (Lake Victoria, Tanzania). Hydrobiologia ,543, 299–304.

  • Suikkanen, S., Pulina, S., Engström-Öst, J., Lehtiniemi, M., Lehtinen, S & Brutemark, A. (2013). Climate change and eutrophication induced shifts in Northern summer Plankton communities. PLoS ONE, 8(6): e66475. https://doi.org/10.1371/journal.pone.0066475.

  • Tackx, M. L. M., Paum, N. D., Mieghem, R. V., Azemar, F., Hamouti, A., Damme, S. V., Fiers, N., & Meire, P. (2004). Zooplankton in the Schelde estuary, Belgium and The Netherlands spatial and temporal patterns. Journal of Plankton Research, 26(2), 133–141. https://doi.org/10.1093/plankt/fbh016.

    Article  CAS  Google Scholar 

  • Tavernini, S., Pierobon, E., & Viaroli, P. (2011). Physical factors and dissolved reactive silica affect phytoplankton community structure and dynamics in a lowland eutrophic river (Po river, Italy). Hydrobiologia, 669(1), 213–225. https://doi.org/10.1007/s10750-011-0688-2.

    Article  CAS  Google Scholar 

  • Trinh, A.D (2003) Etude de la qualité des eaux d’un hydrosystème fluvial urbain autour de Hanoi (Vietnam) suivi experimental et modélisation. Thèse Université Grenoble 1, France and Vietnam Academy of Science and Technology (VAST), 265 p.

  • Trinh, A. D., Meysman, F., Rochelle-Newall, E., & Bonnet, M. P. (2012). Quantification of sediment-water interactions in a polluted tropical river through biogeochemical modeling. Global Biogeochemical Cycles, 26, GB3010. https://doi.org/10.1029/2010GB003963.

    Article  Google Scholar 

  • Trinh, A. D., Vu, D. L., & Ta, T. T. (2013). Partition of heavy metals in a tropical river system impacted by municipal waste. Environmental Monitoring Assessment, 185, 1907–1925.

    Article  Google Scholar 

  • Van den Hoek, C., Mann, D., & Jahns, H. M. (1996). Algae‬: an introduction to phycology‬. Cambridge: Cambridge University Press 637p.

    Google Scholar 

  • Vitousek, P., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2012). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5–15.

    Article  Google Scholar 

  • Vu, T. N., Duong, T. T., Le, H. A., Hoang, T. K., Pham, T. N., & Tran, V. T. (2012). Variation in phytoplankton density and occurrence of toxic cyanobacteria in the lake Ho Tay. Journal of Science and Technology, 28, 256–263.

    Google Scholar 

  • Wang, J. J. (1961). Fauna of freshwater Rotifera of China (288p). Beijing: Science press of China.

    Google Scholar 

  • Wehr, J. D., & Descy, J. P. (1998). Use of phytoplankton in large river management. Journal of Phycology, 34(5), 741–749. https://doi.org/10.1046/j.1529-8817.1998.340741.x.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NAFOSTED (106NN.99-2014.20 project) and the IFS W/4674-2 project. The authors are grateful for the financial supports from Vietnam’s National Foundation for Science and Technology Development (NAFOSTED), the International Foundation for Science (IFS). The authors thank many individuals for their help in collecting samples in the field. This study was also related to the NUCOWS research project (Nutrients and Contaminants in Waters in Southeast Asia) from the USTH (University of Science and Technology of Hanoi, Hanoi, Vietnam). We are grateful to the anonymous reviewers for their helpful comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Thuy Duong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, H.T.T., Duong, T.T., Nguyen, K.T. et al. Impact of anthropogenic activities on water quality and plankton communities in the Day River (Red River Delta, Vietnam). Environ Monit Assess 190, 67 (2018). https://doi.org/10.1007/s10661-017-6435-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6435-z

Keywords

Navigation