Skip to main content

Advertisement

Log in

Influence of the orographic roughness of glacier valleys across the Transantarctic Mountains in an atmospheric regional model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Glacier valleys across the Transantarctic Mountains are not properly taken into account in climate models, because of their coarse resolution. Nonetheless, glacier valleys control katabatic winds in this region, and the latter are thought to affect the climate of the Ross Sea sector, frsater formation to snow mass balance. The purpose of this paper is to investigate the role of the production of turbulent kinetic energy by the subgrid-scale orography in the Transantarctic Mountains using a 20-km atmospheric regional model. A classical orographic roughness length parametrization is modified to produce either smooth or rough valleys. A one-year simulation shows that katabatic winds in the Transantarctic Mountains are strongly improved using smooth valleys rather than rough valleys. Pressure and temperature fields are affected by the representation of the orographic roughness, specifically in the Transantarctic Mountains and over the Ross Ice Shelf. A smooth representation of escarpment regions shows better agreement with automatic weather station observations than a rough representation. This work stresses the need to improve the representation of subgrid-scale orography to simulate realistic katabatic flows. This paper also provides a way of improving surface winds in an atmospheric model without increasing its resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andreas EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound Layer Meteorol 38:159–184

    Article  Google Scholar 

  • Andreas EL (2002) Parametrizing scalar transfer coefficients over snow and sea ice: a review. J Hydrometeorol 3:417–432

    Article  Google Scholar 

  • Argentini S, Mastrantonio G, Fiocco G, Ocone R (1992) Complexity of the wind field as observed by a sodar system and by automatic weather stations on the Nansen Ice Sheet, Antarctica, during summer 1988-89: two case studies. Tellus Ser B Chem Phys Meteorol B 44:422–429

    Article  Google Scholar 

  • Bailey DA, Lynch AH (2000) Development of an Antarctic regional climate system model. Part I: sea ice and large-scale circulation. J Clim 13:1337–1349

    Article  Google Scholar 

  • Beljaars ACM, Brown AR, Wood N (2004) A new parametrization of turbulent orographic form drag. Q J R Meteorol Soc 130:1327–1347

    Article  Google Scholar 

  • Bintanja R (1999) On the glaciological, meteorological, and climatological significance of Antarctic Blue Ice Areas. Rev Geophys 37(3):337–359

    Article  Google Scholar 

  • Broecker WS, Peacock SL, Walker S, Weiss R, Fahrbach E, Schroeder M, Mikolajevicz U, Heinze C, Key R, Peng T-H, Rubin S (1998) How much deep water is formed in the Southern Ocean? J Geophys Res 103(C8):15833–15843

    Article  Google Scholar 

  • Bromwich D, Monaghan A, Manning K, Powers J (2005) Real-time forecasting for the Antarctic: an evaluation of the Antarctic mesoscale prediction system (AMPS). Mon Weather Rev 133(3):579–603

    Article  Google Scholar 

  • Bromwich DH (1989) Satellite analysis of Antarctic katabatic wind behaviour. Bull Am Meteorol Soc 70:738–749

    Article  Google Scholar 

  • Brown RD (2001) Arctic snow cover conditions during the Summer of 1998. The state of the Arctic cryosphere during the extreme warm summer of 1998: documenting cryospheric variability in the Canadian Arctic, chap 1:4, p 7 p. CCAF Summer 1998 Project Team, CCAF Final Report. Available at http://www.socc.ca

  • Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow cover stratigraphy for operational avalanche forecasting. J Glaciol 38(128):13–22

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28(2):181–189

    Article  Google Scholar 

  • Carrasco J-F, Bromwich D, Monaghan A (2003) Distribution and characteristics of mesoscale cyclones in the Antarctic: Ross Sea Eastward to the Weddel Sea. Mon Weather Rev 131:289–301

    Article  Google Scholar 

  • Carrasco JF, Bromwich DH (1993) Mesoscale cyclogenesis dynamics over the southwestern Ross Sea, Antarctica. J Geophys Res 98 D7:12973–12995

    Article  Google Scholar 

  • Catry B, Geleyn J-F, Bouyssel F, Cedilnik J, Brozkova R, Derkova M, Mladek R (2008) A new sub-grid scale lift formulation in a mountain drag parametrization scheme. Meteorol Zeitsch 17:1–16

    Google Scholar 

  • Charnock M (1955) Wind stress on a water surface. Q J R Meteorol Soc 81:639–640

    Article  Google Scholar 

  • Connolley W, Harangozo S (2001) A comparison of five numerical weather prediction analysis climatologies in southern high latitudes. J Clim 14(1):30–44

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux–profile relationships. Bound Layer Meteorol 7(3):363–372

    Article  Google Scholar 

  • ECMWF (2004) IFS documentation—cycle CY28r1—part IV—Section 10.5. Technical report, European Center for Meteorological Weather Forecast, Reading, England. Available at http://www.ecmwf.int/research/ifsdocs/CY28r1/Physics/Physics-11-06.htm

  • Fiedler F, Panofsky HA (1972) The geostrophic drag coefficient and the effective roughness length. Q J R Meteorol Soc 98:213–220

    Google Scholar 

  • Fogt RL, Bromwich DH (2008) Atmospheric moisture and cloud cover characteristics forecast by AMPS. Weather Forecast 23:914–930

    Article  Google Scholar 

  • Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M (2004) New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Clim Dyn 23(7):803–813

    Article  Google Scholar 

  • Gallée H (1995) Simulation of the Mesocyclonic activity in the Ross Sea, Antarctica. Mon Weather Rev 123:2050–2069

    Article  Google Scholar 

  • Gallée H, Duynkerke PG (1997) Air–snow interactions and the surface energy and mass balance over the melting zone of west Greenland during the Greenland Ice margin experiment. J Geophys Res 102:13813–13824

    Article  Google Scholar 

  • Gallée H, Guyonmarc’h G, Brun E (2001) Impact of snow drift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Bound Layer Meteorol 99:1–19

    Article  Google Scholar 

  • Gallée H, Peyaud V, Goodwin I (2005) Simulation of the net snow accumulation along the Wilkes Land transect, Antarctica, with a regional climate model. Ann Glaciol 41:1–6

    Article  Google Scholar 

  • Gallée H, Schayes G (1994) Development of a three-dimensional meso-gamma primitive equations model, katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon Weather Rev 22:671–685

    Article  Google Scholar 

  • Georgelin M, Bougeault P, Black T, Brzovic N, Buzzi A, Calvo J, Casse V, Desgagne M, El-Khatib R, Geleyn J-F, Holt T, Hong S-Y, Kato T, Katzfey J, Kurihara K, Lacroix B, Lalaurette F, Lemaitre Y, Mailhot J, Majewski D, Malguzzi P, Masson V, McGregor J, Minguzzi E, Paccagnella T, Wilson C (2000) The second COMPARE exercise: a model intercomparison using a case of a typical mesoscale orographic flow, the PYREX IOP3. Q J R Meteorol Soc 126:991–1029

    Article  Google Scholar 

  • Giorgi F, Mearns O (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104 D6:6335–6352

    Article  Google Scholar 

  • Guo Z, Bromwich DH, Cassano J (2003) Evaluation of Polar MM5 Simulations of Antarctic atmospheric circulation. Mon Weather Rev 131:384–411

    Article  Google Scholar 

  • Haran T, Bohlander J, Scambos T, Painter T, Fahnestock M compilers (2005, updated 2006). MODIS mosaic of Antarctica (MOA) image map. National Snow and Ice Data Center. Digital media, Boulder, Colorado

  • Heinemann G, Klein T (2003) Simulations of topographically forced mesocyclones in the Weddel Sea and the Ross Sea region of Antarctica. Mon Weather Rev 131:302–316

    Article  Google Scholar 

  • Jourdain NC, Mathiot P, Gallée H, Barnier B (2009) Influence of coupling on atmosphere, sea ice and ocean regional models in the Ross Sea sector, Antarctica. Clim Dyn (submitted)

  • Kim Y-J, Doyle JD (2005) Extension of an orographic-drag parametrization scheme to incorporate orographic anisotropy and flow blocking. Q J R Meteorol Soc 131:1893–1921

    Article  Google Scholar 

  • Kim YJ, Eckermann SD, Chun H-Y (2003) An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models: survey article. Atmosphere-Ocean 41:65–98

    Article  Google Scholar 

  • Kodama Y, Wendler G (1986) Wind and temperature regime along the slope of adelie land, Antarctica. J Geophys Res 91:6735–6741

    Article  Google Scholar 

  • Kodama Y, Wendler G, Gosink J (1985) The effect of blowing snow on katabatic winds in Antarctica. Ann Glaciol 6:59–62

    Google Scholar 

  • Kurtz DD, Bromwich DH (1985) A recurring, atmospherically forced polynya in Terra Nova Bay. Antarctic Res Ser 43:493–508

    Google Scholar 

  • Liu H, Jezek KC, Li B, Zhao Z (2001) RADARSDAT Antarctic Mapping Project digital elevation model. Version 2 Technical report, Boulder, CO, NSIDC

  • Lott F (1998) Alleviation of stationary biases in a GCM through a Mountain Drag Parametrization Scheme and a simple representation of Mountain Lift Forces. Mon Weather Rev 127:788–800

    Article  Google Scholar 

  • Lott F, Miller MJ (1997) A new subgrid-scale orographic parametrization: its formulation and testing. Q J R Meteorol Soc 123:101–127

    Article  Google Scholar 

  • Mathiot P, Jourdain NC, Barnier B, Gallée H (2008) Sensitivity of a model of the Ross Ice Shelf Polynya to different atmospheric forcing sets. Mercator Ocean Q Newslett 28:22–30

    Google Scholar 

  • Mathiot P, Jourdain NC, Barnier B, Gallée H, Molines JM, Le Sommer J (2009) Sensitivity of coastal polynyas and high salinity shelf water production in the Ross Sea, Antarctica, to the Atmospheric Forcing. Ocean Dyn (submitted)

  • Miller MJ, Palmer TN, Swinbank R (1989) Parametrization and influence of subgridscale orography in general circulation and numerical prediction models. Meteorol Atmos Phys 40:84–109

    Article  Google Scholar 

  • Monaghan AJ, Bromwich DH, Powers JG, Manning KW (2005) The climate of the McMurdo, Antarctica, region as represented by one year of forecasts from the Antarctic Mesoscale Prediction System. J Clim 18:1174–1189

    Article  Google Scholar 

  • Morales Maqueda MA, Willmott AJ, Biggs NRT (2004) Polynia dynamics: a review of observations and modeling. Review of Geophysics 42:1–37

    Article  Google Scholar 

  • Morcrette J (2002) Assessment of the ECMWF Model cloudiness and surface radiation fields at the ARM SGP site. Mon Weather Rev 130:257–277

    Article  Google Scholar 

  • O’Connor WP, Bromwich DH, Carrasco JF (1994) Cyclonically forced barrier winds along the Transantarctic Mountains near Ross Island. Mon Weather Rev 122(1):137–150

    Article  Google Scholar 

  • Parish T, Bromwich D (2007) Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high Southern latitudes. Mon Weather Rev 135(5):1961–1973

    Article  Google Scholar 

  • Parish TR (1988) Surface winds over the Antarctic continent: a review. Rev Geophys 26:169–180

    Article  Google Scholar 

  • Pease CH (1987) The size of wind-driven coastal polynyas. J Geophys Res 92:7049–7059

    Article  Google Scholar 

  • Powers JG (2007) Numerical prediction of an Antarctic severe wind event with the Weather Research and Forecasting (WRF) model. Mon Weather Rev 135:3134–3157

    Article  Google Scholar 

  • Prasad TG, Mc Clean JL, Hunke EC, Semtner AJ, Ivanova D (2005) A numerical study of the western Cosmonaut polynya in a coupled ocean–sea ice model. J Geophys Res 110:C10008.1–C10008.21

    Article  Google Scholar 

  • Rasmussen EA, Turner J (2003) Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Reijmer CH, van Meijgaard E, van der Broeke MR (2004) Numerical studies with a regional atmospheric climate model based on changes in the roughness length for momentum and heat over Antarctica. Bound Layer Meteorol 111:313–334

    Article  Google Scholar 

  • Rontu L (2006) A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus 58A:69–81

    Article  Google Scholar 

  • Simmonds I, Keay K, Lim EP (2003) Synoptic activity in the Seas around Antarctica. Mon Weather Rev 131:272–288

    Article  Google Scholar 

  • Stearns CR, Weidner GA (1992) Antarctic Automatic Weather Stations: austral summer 1991–1992. Antarct J US 27:280–282

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Turner J, Pendlebury S (2004) The international Antarctic weather forecasting handbook. British Antarctic Survey, Cambridge

    Google Scholar 

  • Unden P, Rontu P, Järvinen H, Lynch H, Calvo J et al. (2002) The HIRLAM-5 scientific documentation. Technical report

  • van den Broeke M, van de Berg WJ, van Meijgaard E. Reijmer C (2006) Identification of Antarctic ablation areas using a regional atmospheric climate model. J Geophys Res 111:D18:110

    Google Scholar 

  • van Lipzig NPM, van Meijgaard E, Oerlemans J (2002) The spatial and temporal variability of the surface mass balance in Antarctica: results from a regional atmospheric climate model. Int J Climatol 22:1197–1217

    Article  Google Scholar 

  • Vosper SB, Brown AR (2008) The effect of small-scale hills on orographic drag. Q J R Meteorol Soc 133:1345–1352

    Google Scholar 

  • Wallace JM, Tibaldi S, Simmons AJ (1983) Reduction of systematic forecast errors in the ECMWF model through the introduction of an envelope orography. Q J R Meteorol Soc 109:683–717

    Article  Google Scholar 

  • Winther JG, Jespersen MN, Liston GE (2001) Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J Glaciol 47(157):325–334

    Article  Google Scholar 

  • Wood N, Brown AR, Hewer FE (2001) Parametrizing the effects of orography on the boundary layer: an alternative to effective roughness lengths. Q J R Meteorol Soc 127:759–777

    Google Scholar 

Download references

Acknowledgment

The manuscript benefited from helpful comments of several anonymous reviewers. We thank Christophe Eugéne Menkes for support in the revision process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas C. Jourdain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jourdain, N.C., Gallée, H. Influence of the orographic roughness of glacier valleys across the Transantarctic Mountains in an atmospheric regional model. Clim Dyn 36, 1067–1081 (2011). https://doi.org/10.1007/s00382-010-0757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0757-7

Keywords

Navigation