Skip to main content
Log in

Mapping groundwater reserves in northwestern Cambodia with the combined use of data from lithologs and time-domain-electromagnetic and magnetic-resonance soundings

Cartographie de réserves d’eaux souterraines au nord-ouest du Cambodge avec une utilisation combinée de données de logs lithologiques, de sondages électromagnétiques dans le domaine temporel et de résonance magnétique

Mapeo de las reservas de agua subterránea en el noroeste de Camboya con el uso combinado de datos de litológicos y sondeos electromagnéticos en el dominio del tiempo y de resonancia magnética

利用岩性记录数据及时间域电磁和磁共振测深绘制柬埔寨西北地区地下水储量图

Mapeamento de reservas de águas subterrâneas no noroeste do Camboja com uso combinado de dados litológicos e sondagens eletromagnéticas de domínio de tempo e por ressonância magnética

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Lack of access to water is the primary constraint to development in rural areas of northwestern Cambodia. Communities lack water for both domestic and irrigation purposes. To provide access to drinking water, governmental and aid agencies have focused on drilling shallow boreholes but they have not had a clear understanding of groundwater potential. The goal of this study has been to improve hydrogeological knowledge of two districts in Oddar Meanchey Province by analyzing borehole lithologs and geophysical data sets. The comparison of 55 time-domain electromagnetic (TEM) soundings and lithologs, as well as 66 magnetic-resonance soundings (MRS) with TEM soundings, allows a better understanding of the links between geology, electrical resistivity and hydrogeological parameters such as the specific yield (Sy) derived from MRS. The main findings are that water inflow and Sy are more related to electrical resistivity and elevation than to the litholog description. Indeed, conductive media are associated with a null value of Sy, whereas resistive rocks at low elevation are always linked to strictly positive Sy. A new methodology was developed to create maps of groundwater reserves based on 612 TEM soundings and the observed relationship between resistivity and Sy. TEM soundings were inverted using a quasi-3D modeling approach called ‘spatially constrained inversion’. Such maps will, no doubt, be very useful for borehole siting and in the economic development of the province because they clearly distinguish areas of high groundwater-reserves potential from areas that lack reserves.

Résumé

Le manque d’accès à l’eau est. le principal obstacle au développement dans les zones rurales du nord-ouest du Cambodge. Les collectivités manquent d’eau à la fois pour les usages domestiques et pour l’irrigation. Pour fournir un accès à l’eau potable, les agences gouvernementales et d’aide se sont focalisées sur le forages peu profonds, sans compréhension claire du potentiel en eau souterraine. Le but de cette étude a été d’améliorer la connaissance hydrogéologique de deux districts de la province Oddar Meanchey en analysant des logs de forages et des ensembles de données géophysiques. La comparaison de 55 sondages électromagnétiques dans le domaine temporel (EMT) et de logs de forage, ainsi que celle de 66 sondages de résonance magnétique (SRM) avec les sondages EMT, permettent une meilleure compréhension des relations entre la géologie, la résistivité électrique et les paramètres hydrogéologiques tels la porosité efficace (Pe) déduite des SRM. Les principales conclusions sont que l’afflux d’eau et la Pe sont plus liés à la résistivité électrique et l’altitude que ne le suggère la description des logs lithologiques. En effet, les milieux conducteurs sont associés à une valeur nulle de la Pe, bien que les roches résistantes à basse altitude soient toujours reliées à une Pe positive. Une nouvelle méthodologie a été développée pour dessiner des cartes des réserves d’eau souterraine basées sur 612 sondages EMT et sur les relations observées entre la résistivité et la Pe. Les sondages EMT ont été inversés en utilisant une approche de quasi-modélisation 3D appelée « inversion spatialement contrainte ». De telles cartes seront, sans doute, très utiles pour l’implantation des forages et le développement économique de la province car elles différencient très clairement les zones à potentiel élevé en réserves d’eaux souterraines des zones sans réserves.

Resumen

La falta de acceso al agua es la principal limitación para el desarrollo en las zonas rurales del noroeste de Camboya. Las comunidades carecen de agua para fines domésticos y de riego. Para proporcionar el acceso al agua potable, las agencias gubernamentales y de ayuda se han centrado en la perforación de pozos poco profundos, pero no han tenido una comprensión clara del potencial de las aguas subterráneas. El objetivo de este estudio ha sido mejorar el conocimiento hidrogeológico de dos distritos en la provincia de Oddar Meanchey mediante el análisis de conjuntos de datos geológicos y litologías de pozos. La comparación de 55 sondeos electromagnéticos (TEM) en el dominio del tiempo y litologías, así como 66 sondeos de resonancia magnética (MRS) con sondeos TEM, permite una mejor comprensión de las relaciones entre la geología, la resistividad eléctrica y los parámetros hidrogeológicos, como el rendimiento específico (Sy) derivado de MRS. Los principales hallazgos son que el flujo de agua y Sy están más relacionados con la resistividad eléctrica y la elevación que con la descripción litológica. De hecho, los medios conductores están asociados con un valor nulo de Sy, mientras que las rocas resistivas a baja elevación siempre están vinculadas a Sy estrictamente positivo. Se desarrolló una nueva metodología para crear mapas de reservas de agua subterránea basados en 612 sondeos TEM y la relación observada entre resistividad y Sy. Los sondeos TEM se invirtieron utilizando un enfoque de modelado cuasi-3D llamado “inversión espacialmente restringida”. Dichos mapas, sin duda, serán muy útiles para la ubicación de pozos y en el desarrollo económico de la provincia, ya que distinguen claramente las áreas de alto potencial de reservas de agua subterránea de las áreas que carecen de reservas.

摘要

难以获取水是柬埔寨西北部农村地区发展的主要约束。社区缺乏家庭用水和灌溉用水。为了获取饮用水,政府和援助机构集中力量打浅层钻孔,但他们不太了解地下水的潜力。本研究的目标就是通过分析钻孔岩性记录和地球物理数据集提高对Oddar Meanchey省两个地区水文地质状况的认识。55个时间域电磁探测和岩性记录以及66个磁共振探测与时间域探测对比可以更好地了解地质、电阻率和水文地质参数诸如根据磁共振探测得到的单位出水量(Sy)之间的联系。主要发现就是,水流入和(Sy)与电阻率和海拔的关联性比与岩性记录描述的关联性要高。的确,传导介质与(Sy)无效值相关联,而海拔低的有阻力的岩石总是严格地和正的(Sy)相关联。开发了根据612个时间域电磁探测创建地下水储量图以及所观测到的阻抗和(Sy)之间关系的新方法。采用被称为“空间上强制转换”的近似3D模拟方法反转时间域电磁探测。这样的图件毫无疑问对钻孔的定位以及在该省经济发展中非常有用,因为这些图件能区分出地下水潜力高的地区和缺少储量的地区。

Resumo

A falta de acesso à água é o principal obstáculo ao desenvolvimento das áreas rurais do noroeste do Camboja. As comunidades não têm água para uso doméstico nem para irrigação. Buscando permitir o acesso a água potável, as agências governamentais e assistencialistas se concentraram na perfuração de poços rasos, mas não obtiveram uma compreensão clara do potencial das águas subterrâneas. O objetivo deste estudo foi melhorar o conhecimento hidrogeológico de dois distritos na Província de Oddar Meanchey, analisando os conjuntos de dados litológicos e geofísicos dos poços. A comparação de 55 sondagens eletromagnéticas de domínio de tempo (EDT) e suas litologias, bem como de 66 sondagens de ressonância magnética (SRM) com as sondagens EDT, permitiram uma melhor compreensão das conexões entre geologia, resistividade elétrica e parâmetros hidrogeológicos tais como o rendimento específico (Sy), derivado do SRM. Os principais resultados são que o fluxo de entrada da água e o Sy estão mais relacionados à resistividade elétrica e elevação do que à descrição litológica. De fato, o meio condutor está associado a um valor nulo de Sy, enquanto que as rochas resistivas em baixa elevação estão sempre ligadas a valores de Sy estritamente positivos. Uma nova metodologia foi desenvolvida para criar mapas de reservas de águas subterrâneas com base em 612 sondagens EDT e a relação observada entre resistividade e Sy. As sondagens EDT foram invertidas usando uma abordagem de modelagem quasi-3D chamada “inversão espacialmente restrita”. Tais mapas, sem dúvida, serão muito úteis para a identificação de poços e no desenvolvimento econômico da província, pois distinguem claramente as áreas de alto potencial de reservas de águas subterrâneas das áreas que não possuem tais reservas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Auken EA, Christiansen V, Jacobsen L, Sørensen KI (2005) Laterally constrained 1D inversion of 3D TEM data: Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP) proceedings, April 2005, Atlanta, GA, pp 519–524

  • Auken EA, Christiansen AV, Fiandaca G, Schamper C, Behroozmand AA, Binley A, Nielsen E, Effersø F, Christensen NB, Sørensen KI, Foged N, Vignoli G (2015) An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data. Explor Geophys 2015:223–235

    Article  Google Scholar 

  • Baroncini-Turricchia G, Francés AP, Lubczynski MW, Martínez Fernández J, Roy J (2014) Integrating MRS data with hydrologic model: Carrizal catchment (Spain). Near Surf Geophys 12:255–269. https://doi.org/10.3997/1873-0604.2014003

    Article  Google Scholar 

  • Barsukov P, Fainberg E, Khabensky E (2006) Shallow investigations by TEM-FAST technique: methodology and examples. In: Spichak V (ed) Electromagnetic sounding of the Earth’s interior, methods in geochemistry and geophysics, 40. Elsevier, Amsterdam, pp 55–77

    Chapter  Google Scholar 

  • Bedrosian PA, Schamper C, Auken E (2016) A comparison of helicopter-borne electromagnetic systems for hydrogeologic studies. Geophys Prospect 64(1):192–215

    Article  Google Scholar 

  • Benner SG, Polizzotto ML, Kocar BD, Ganguly S, Phan K, Ouch K, Sampson M, Fendorf S (2008) Groundwater flow in an arsenic-contaminated aquifer, Mekong Delta, Cambodia. Appl Geochem 23:3072–3087

    Article  Google Scholar 

  • Berg M, Stengel C, Trang PTK, Hung Viet P, Sampson ML, Leng M, Samreth S, Fredericks D (2007) Magnitude of arsenic pollution in the Mekong and Red River deltas: Cambodia and Vietnam. Sci Total Environ 372:413–425. https://doi.org/10.1016/j.scitotenv.2006.09.010

    Article  Google Scholar 

  • Bernard J (2007) Instruments and field work to measure a magnetic resonance sounding. Bol Geol Min 118(3):459–472

    Google Scholar 

  • Bouche VA, Lartsev VS, Boulatov VE, Volodina VI, Catinsky YG, Veselov V (1990) Carta Cosmogeologique du Cambodge [Cosmogeological map of Cambodia]. JSC VNIIZARUBEZHGEOLOGIA, Moscow

  • Bunthan N (2006) A review of the current situation for water resources management and the role of agricultural education in Cambodia. J Dev Sustain Agric 1:25–33

    Google Scholar 

  • Chongo M, Christiansen AV, Fiandaca G, Nyambe IA, Larsen F, Bauer-Gottwein P (2015a) Mapping localised freshwater anomalies in the brackish paleo-lake sediments of the Machile–Zambezi Basin with transient electromagnetic sounding, geoelectrical imaging and induced polarisation. J Appl Geophys 123:81–92

    Article  Google Scholar 

  • Chongo M, Christiansen AV, Tembo A, Banda KE, Nyambe IA, Larsen F, Bauer-Gottwein P (2015b) Airborne and ground-based transient electromagnetic mapping of groundwater salinity in the Machile–Zambezi Basin, southwestern Zambia. Near Surf Geophys 13(4):383–395

    Google Scholar 

  • Dottin O (1972) Carte géologique de reconnaissance: Siem Reap [Geological map: Siem Reap]. BRGM, Orléans, France

    Google Scholar 

  • French Red Cross (2015) Final narrative report no. 3-2014-2015. DCI-FOOD/2011/278–175, French Red Cross, Paris, 184 pp

  • Guéguen Y, Palciauskas V (1997) Introduction à la physique des roches [Introduction to rock physics]. Hermann, Paris, 312 pp

  • Gupta AD (2001) Challenges and opportunities for water resources management in Southeast Asia. Hydrol Sci J 46(6):923–935

    Article  Google Scholar 

  • Hunter D, Kepic A (2005) Surface nuclear magnetic resonance signal contribution in conductive terrains. Explor Geophys 36(1):73–77

    Article  Google Scholar 

  • Johnston R, Roberts M, Try T, de Silva S (2013) Groundwater for irrigation in Cambodia. http://www.iwmi.cgiar.org/Publications/issue_briefs/cambodia/issue_brief_03-groundwater_for_irrigation_in_cambodia.pdf. Accessed 20 March 2015

  • Kirsch R (ed) (2006) Groundwater geophysics, a tool for hydrogeology. Springer, Heidelberg, Germany

    Google Scholar 

  • Kummu M, Tes S, Yin S, Adamson P, Josja J, Koponen J, Richey J, Sarkkula J (2014) Water balance analysis for the Tonle Sap Lake-floodplain system. Hydrol Process 28:1722–1733

    Article  Google Scholar 

  • Landon M (2011) Preliminary compilation and review of current information on groundwater monitoring and resources in the lower Mekong River basin. USGS, Reston, VA

    Google Scholar 

  • Legchenko A, Valla P (2002) A review of the basic principles for proton magnetic resonance sounding measurements. J Appl Geophys 50(1):3–19

    Article  Google Scholar 

  • Legchenko A (2013) Magnetic resonance imaging for groundwater. Wiley, Chichester, UK, 235 pp

    Book  Google Scholar 

  • Legchenko A, Baltassat JM, Beauce A, Bernard J (2002) Nuclear magnetic resonance as a geophysical tool for hydrogeologists. J Appl Geophys 50(1):21–46

    Article  Google Scholar 

  • Legchenko A, Ezerski A, Girard JF, Baltassat JM, Boucher M, Camerlynk C, Al-Zoubi A (2008) Interpretation of magnetic resonance soundings in rocks with high electrical conductivity. J Appl Geophys 66:118–127. https://doi.org/10.1016/j.jappgeo.2008.04.002

    Article  Google Scholar 

  • Legchenko A, Ezersky M, Camerlynck C, Al-Zoubi A, Chalikakis K (2009) Joint use of TEM and MRS methods in a complex geological setting. Compt Rendus Geosci 341(10):908–917

    Article  Google Scholar 

  • Legchenko A, Vouillamoz JM, Lawson FMA, Alle C, Descloitres M, Boucher M (2016) Interpretation of magnetic resonance measurements in the varying earth’s magnetic field. Geophysics 81(4):23–31

    Article  Google Scholar 

  • Legchenko A, Comte JC, Ofterdinger U, Vouillamoz JM, Lawson FMA, Walsh J (2017) Joint use of singular value decomposition and Monte-Carlo simulation for estimating uncertainty in surface NMR inversion. J Appl Geophys 144:28–36

    Article  Google Scholar 

  • Lenat J, Fitterman D, Jackson D, Labazuy P (2000) Geoelectrical structure of the central zone of piton de la Fournaise volcano (Reunion). B Volcanol 62:75–89

    Article  Google Scholar 

  • Lienert B (1991) An electromagnetic study of Maui’s last active volcano. Geophysics 56:972–982

    Article  Google Scholar 

  • Lubczynski M, Roy J (2007) Use of MRS for hydrogeological parameterization and modelling. Bol Geol Min 118(3):509–530

    Google Scholar 

  • MacNeil R, Sanford W, Connor C, Sandberg S, Diez M (2007) Investigation of the groundwater system at Masaya Caldera, Nicaragua, using transient electromagnetics and numerical simulation. J Volcanol Geotherm Res 166:217–232

    Article  Google Scholar 

  • McNeill J (1980) Electrical conductivity of soils and rocks, technical note TN-5. Geonics, Mississauga, ON, 22 pp

    Google Scholar 

  • MRD, JICA (2002) The study on groundwater development in southern Cambodia: final report. JICA, Tokyo

    Google Scholar 

  • Nabighian MN (1988) Electromagnetic methods in applied geophysics, vol 1. Society of Exploration Geophysicists, Tulsa, OK

  • Nabighian MN (1991) Electromagnetic methods in applied geophysics, vol 2. Society of Exploration Geophysicists, Tulsa, OK

  • National Institute of Statistics (2009) Cambodia: general population census of Cambodia 2008 no. DDI-KHM-NIS-GPCC-2008-v1.0. Ministry of Planning, Phnom Penh, Vietnam. https://camnut.weebly.com/uploads/2/0/3/8/20389289/2009_census_2008.pdf. Accessed 19 March 2015

  • Pryet A, Dominguez C, Tomai PF, Chaumont C, d’Ozouville N, Villacís M, Violette S (2012) Quantification of cloud water interception along the windward slope of Santa Cruz Island, Galapagos (Ecuador). Agric For Meteorol 161:94–106

    Article  Google Scholar 

  • Pryet A, d’Ozouville N, Violette S, Deffontaines B, Auken E (2012) Hydrogeological settings of a volcanic island (San Cristóbal, Galapagos) from joint interpretation of airborne electromagnetics and geomorphological observations. Hydrol Earth Syst Sci 16(12):4571–4579

    Article  Google Scholar 

  • Raksmey M, Jinno K, Tsutsumi A (2010) Influence of flooding on groundwater flow in central Cambodia. Environ Earth Sci 63:151–161

    Google Scholar 

  • Rasmussen WC, Bradford GM (1977) Ground-water resources of Cambodia. US Geol Surv Water Suppl Pap 1608-P. http://pubs.er.usgs.gov/publication/wsp1608P. Accessed 20 March 2015

  • Schirov M, Legchenko A, Creer G (1991) New direct non-invasive ground water detection technology for Australia. Explor Geophys 22:333–338. https://doi.org/10.1071/EG991333

    Article  Google Scholar 

  • Shushakov OA (1996) Surface NMR measurement of proton relaxation times in medium to coarse-grained sand aquifer. Magn Reson Imaging 14(7–8):959–960

    Article  Google Scholar 

  • Trushkin DV, Shushakov OA, Legchenko AV (1995) Surface NMR application to an electroconductive medium. Geophys Prospect 43:623–633

    Article  Google Scholar 

  • Valois R, Vouillamoz JM, Lun S, Arnout L (2017) Assessment of water resources to support the development of irrigation in northwest Cambodia: a water budget approach. Hydrol Sci J 62 (11):1840–1855

  • Viezzoli A, Christiansen AV, Auken E, Sørensen K (2008) Quasi-3D modeling of airborne TEM data by spatially constrained inversion. Geophysics 73(3):F105–F113

    Article  Google Scholar 

  • Vouillamoz JM, Descloitres M, Bernard J, Fourcassier P, Romagny L (2002) Application of integrated magnetic resonance sounding and resistivity methods for borehole implementation: a case study in Cambodia. J Appl Geophys 50(1):67–81

    Article  Google Scholar 

  • Vouillamoz JM, Favreau G, Massuel S, Boucher M, Nazoumou Y, Legchenko A (2008) Contribution of magnetic resonance sounding to aquifer characterization and recharge estimate in semiarid Niger. J Appl Geophys 64(3):99–108

    Article  Google Scholar 

  • Vouillamoz JM, Sokheng S, Bruyere O, Caron D, Arnout L (2012) Towards a better estimate of storage properties of aquifer with magnetic resonance sounding. J Hydrol 458–459:51–58

    Article  Google Scholar 

  • Vouillamoz JM, Sophoeun P, Bruyere O, Arnout L (2013) Estimating storage properties of aquifer with magnetic resonance sounding: a field verification in northern Cambodia of the gravitational water apparent cutoff time concept. Near Surf Geophys 12:211–216

    Google Scholar 

  • Vouillamoz JM, Valois R, Lun S, Caron D, Arnout L (2015) Can groundwater secure drinking water supply and supplementary irrigation in new settlements of North-West Cambodia? Hydrogeol J. https://doi.org/10.1007/s10040-015-1322-6

Download references

Acknowledgements

We thank Vincent Dhiver who managed the second project and S. Sokheng and P. Sophoeun for their efficient assistance in field work. Also we thank the Institut de Technologie du Cambodge (ITC) for their assistance in field work during several internships. Lastly, we thank A. Petibon and L. Anstett for making this project feasible.

Funding

This work has been carried out in the framework of the Institut de Recherche pour le Développement and the French Red Cross collaborative project 39842A1 - 1R012-RHYD, with the financial support of the European Community (grant DIPECHO SEA ECHO/DIP/BUD/2010/01017 and grant DCI-FOOD/2011/278-175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remi Valois.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valois, R., Vouillamoz, JM., Lun, S. et al. Mapping groundwater reserves in northwestern Cambodia with the combined use of data from lithologs and time-domain-electromagnetic and magnetic-resonance soundings. Hydrogeol J 26, 1187–1200 (2018). https://doi.org/10.1007/s10040-018-1726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-018-1726-1

Keywords

Navigation