Skip to main content
Log in

Seasonal Variations in Drag Coefficient over a Sastrugi-Covered Snowfield in Coastal East Antarctica

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The surface of windy Antarctic snowfields is subject to drifting snow, which leads to the formation of sastrugi. In turn, sastrugi contribute to the drag exerted by the snow surface on the atmosphere and hence influence drifting snow. Although the surface drag over rough sastrugi fields has been estimated for individual locations in Antarctica, its variation over time and with respect to drifting snow has received little attention. Using year-round data from a meteorological mast, seasonal variations in the neutral drag coefficient at a height of 10 m \((C_{{ DN}10})\) in coastal Adelie Land are presented and discussed in light of the formation and behaviour of sastrugi based on observed aeolian erosion patterns. The measurements revealed high \(C_{{ DN}10} \) values \((\ge \) 2 \(\times \) 10\(^{-3})\) and limited drifting snow (35% of the time) in summer (December–February) versus lower \(C_{{ DN}10} \) values \((\approx \) 1.5 \(\times \) \(10^{-3})\) associated with more frequent drifting snow (70% of the time) in winter (March–November). Without the seasonal distinction, there was no clear dependence of \(C_{{ DN}10} \) on friction velocity or wind direction, but observations revealed a general increase in \(C_{{ DN}10} \) with rising air temperature. The main hypothesis defended here is that higher temperatures increase snow cohesion and the development of sastrugi just after snow deposition while inhibiting the sastrugi streamlining process by raising the erosion threshold. This increases the contribution of the sastrugi form drag to the total surface drag in summer when winds are lighter and more variable. The analysis also showed that, in the absence of erosion, single snowfall events can reduce \(C_{{ DN}10} \) to \(1\,\times \,10^{-3}\) due to the burying of pre-existing microrelief under newly deposited snow. The results suggest that polar atmospheric models should account for spatial and temporal variations in snow surface roughness through a dynamic representation of the sastrugi form drag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://www.flowcapt.com/.

References

  • Adachi T (1973) Observation of atmospheric turbulence at Syowa Station in Antarctica (I). Nunkyoku Shiryo 47:7871–7883

    Google Scholar 

  • Adolphs U (1999) Roughness variability of sea ice and snow cover thickness profiles in the Ross, Amundsen, and Bellingshausen Seas. J Geophys Res 104(C6):13577–13591

    Article  Google Scholar 

  • Agosta C, Favier V, Genthon C, Gallée H, Krinner G, Lenaerts JTM, van den Broeke MR (2012) A 40-year accumulation dataset for Adélie Land, Antarctica and its application for model validation. Clim Dyn 38:75–86

    Article  Google Scholar 

  • Albert M, Hawley R (2002) Seasonal changes in snow surface roughness characteristics at Summit, Greenland: implications for snow and firn ventilation. Ann Glaciol 35:510–514

    Article  Google Scholar 

  • Amory C, Trouvilliez A, Gallée H, Favier V, Naaim-Bouvet F, Genthon C, Agosta C, Piard L, Bellot H (2015) Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica. The Cryosphere 9:1–12

    Article  Google Scholar 

  • Amory C, Naaim-Bouvet F, Gallée H, Vignon E (2016) Brief communication: two well-marked cases of aerodynamic adjustment of sastrugi. The Cryosphere 10:1–8

    Article  Google Scholar 

  • Andreas EL (1995) Air-ice drag coefficients in the western weddell sea. 2. A model based on form drag and drifting snow. J Geophys Res 100(C3):4833–4843

    Article  Google Scholar 

  • Andreas EL, Claffey KJ (1995) Air-ice drag coefficients in the western weddell sea. 1. Values deduced from profile measurements. J Geophys Res 100(C3):4821–4831

    Article  Google Scholar 

  • Andreas EL, Lange MA, Ackley SF, Wadhams P (1993) Roughness of Weddell Sea ice and estimates of the air-ice drag coefficient. J Geophys Res 98(C7):439–452

    Article  Google Scholar 

  • Arya SPS (1975) A drag partition theory for determining the largescale roughness parameter and wind stress on the Arctic pack ice. J Geophys Res 80:3447–3454

    Article  Google Scholar 

  • Banke E, Smith S, Anderson R (1980) Drag coefficients at aidjex from sonic anemometer measurements. In: Pritchard R (ed) Sea ice processes and models. University of Washington Press, Seattle, pp 430–442

    Google Scholar 

  • Barral H, Genthon C, Trouvilliez A, Brun C, Amory C (2014) Blowing snow in coastal Adélie Land, Antarctica: three atmospheric-moisture issues. The Cryosphere 8:1905–1919

    Article  Google Scholar 

  • Bintanja R (2001) Modification of the wind speed profile caused by snowdrift: results from observations. Q J R Meteorol Soc 127:2417–2434

    Article  Google Scholar 

  • Bintanja R, van den Broeke MR (1995) Momentum and scalar transfer coefficients over smooth Antarctic surfaces. Boundary-Layer Meteorol 74:89–111

    Article  Google Scholar 

  • Bromwich DH, Parish TR, Zorman CA (1990) The confluence zone of the intense katabatic winds at Terra Nova Bay, Antarctica, as derived from airborne sastrugi surveys and mesoscale numerical modelling. J Geophys Res 95(D5):5495–5509

    Article  Google Scholar 

  • Bromwich DH, Steinhoff DF, Simmonds I, Keay K, Fogt RL (2011) Climatological aspects of cyclogenesis near Adélie Land, Antarctica. Tellus A 63:921–938

    Article  Google Scholar 

  • Budd WF (1966) The drifting of non-uniform snow particles. Am Geophys Union Antarct Res Ser 9:59–70

    Google Scholar 

  • Colbeck SC (1997) A review of sintering in seasonal snow. Cold Regions Res Eng 97–10, CRREL, Hanover: 1–11

  • de Montmollin V (1982) Shear tests on snow explained by fast metamorphism. J Glaciol 28:187–198

    Article  Google Scholar 

  • Denby B, Greuell W (2000) The use of bulk and profile methods for determining the surface heat fluxes in the presence of glacier winds. J Glaciol 46:445–452

    Article  Google Scholar 

  • Doumani GA (1967) Surface structures in snow. Physics of snow and ice. In: International conference on low temperature science, Hokkaido University, Sapporo, pp 1119-1136

  • Favier V, Agosta C, Genthon C, Arnaud L, Trouvilliez A, Gallée H (2011) Modelling the mass and surface heat budgets in a coastal blue ice area of Adélie Land, Antarctica. J Geophys Res 116:F03017

    Article  Google Scholar 

  • Filhol S, Sturm M (2015) Snow bedforms: a review, new data and a formation model. J Geophys Res 120(9):1645–1669

    Article  Google Scholar 

  • Frezzotti M, Gandolfi S, Urbini S (2002) Snow megadunes in Antarctica: sedimentary structure and genesis. J Geophys Res 107(D18):4344. doi:10.1029/2001JD000673

    Article  Google Scholar 

  • Gray DM, Norum DI, Dyck GE (1970) Densities of prairie snowpacks. In: Proceedings of 38th annual meeting west snow conference, Victoria, British Columbia, pp 24–30

  • Guyomarc’h G, Merindol L (1998) Validation of an application for forecasting blowing snow. Ann Glaciol 26:138–143

    Article  Google Scholar 

  • Hosler CL, Jense DC, Goldshlak L (1957) On the aggregation of ice crystals to form snow. J Meteorol 14:415–420

    Article  Google Scholar 

  • Hobbs PV, Mason BJ (1964) The sintering and adhesion of ice. Philos Mag 9:181–197

    Article  Google Scholar 

  • Inoue J (1989a) Surface drag over the snow surface of the Antarctic Plateau. 1: factors controlling surface drag over the katabatic wind region. J Geophys Res 94:2207–2217

    Article  Google Scholar 

  • Inoue J (1989b) Surface drag over the snow surface of the Antarctic Plateau. 2: seasonal change of surface drag in the katabatic wind region. J Geophys Res 94:2219–2224

    Article  Google Scholar 

  • Jackson BS, Carroll JJ (1978) Aerodynamic roughness as a function of wind direction over asymmetric surface elements. Boundary-Layer Meteorol 14:323–330

    Article  Google Scholar 

  • Joffre SM (1982) Momentum and heat transfers in the surface layer over a frozen sea. Boundary-Layer Meteorol 24:211–229

    Article  Google Scholar 

  • King JC, Anderson PS (1994) Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf. Boundary-Layer Meteorol 69:101–121

    Article  Google Scholar 

  • Kobayashi S (1979) Studies on interaction between wind and dry snow surface. Contrib Inst Low Temp Sci 29:1–64

    Google Scholar 

  • Konig G (1985) Roughness length of an Antarctic ice shelf. Polarforschung 55(1):27–32

    Google Scholar 

  • König-Langlo G, King JC, Pettré P (1998) Climatology of the three coastal Antarctic stations Dumont d’Urville, Neumayer, and Halley. J Geophys Res 103(D9):10935–10946

    Article  Google Scholar 

  • Kotlyakov VM (1961) The snow cover of the Antarctic and its role in the present-day glaciation of the continent (Snezhni pokrov antarktidy i ego rol’ v somvremennom oledenenii materika). Translated from Russian 1966, Israel Program for Scientific Translation, Jerusalem, pp 256

  • Li L, Pomeroy JW (1997) Estimates of threshold wind speeds for snow transport using meteorological data. J Appl Meteorol 36:205–213

    Article  Google Scholar 

  • Liljequist GH (1957) Energy exchange over an Antarctic snow field. Norwegian–British–Swedish Antarctic Expedition 1949–1952 vol 2 part 1, Norsk Polarinstitutt, Oslo, pp 298

  • Long DG, Drinkwater MR (2000) Azimuth variation in microwave scatterometer and radiometer data over Antarctica. Trans Geosci Remote Sens 38:1857–1870

    Article  Google Scholar 

  • Mahrt L, Vicker D, Sun J, Jensen NO, Jørgensen H (2001) Determination of the surface drag coefficient. Boundary-Layer Meteorol 99:249–276

    Article  Google Scholar 

  • Maki T (1971) Relationship between the visibility and the wind velocity in drifting snow at Syowa Station. Nankyoku Shiryo (Antarct Rec) 42:35–42

    Google Scholar 

  • Mann GW, Anderson PS, Mobbs SD (2000) Profile measurements of blowing snow at Halley, Antarctica. J Geophys Res 105(D19):24491–24508

    Article  Google Scholar 

  • Mather KB (1962) Further observations on sastrugi, snow dunes and the pattern of surface winds in Antarctica. Polar Rec 11:158–171

    Article  Google Scholar 

  • Mather KB (1969) The pattern of surface wind flow in Antarctica. Pure Appl Geophys 75:332–354

    Article  Google Scholar 

  • Mather KB, Miller GS (1966) Wind drainage off the high plateau of Eastern Antarctica. Nature 209:281–284

    Article  Google Scholar 

  • Matsushita H, Matsuzawa M, Abe O (2012) The influences of temperature and normal load on the shear strength of snow consisting of precipitation particles. Ann Glaciol 53:31–38

    Article  Google Scholar 

  • Mellor M (1965) Blowing snow. Cold Reg Sci and Eng III A3c, CRREL, Hanover, pp 1–79

  • Mellor M (1975) A review of basic snow mechanics. Int Assoc Hydrol Sci 114:251–291

    Google Scholar 

  • Naaim-Bouvet F, Bellot H, Nishimura K, Genthon C, Palerme C, Guyomarc’h G, Vionnet V (2014) Detection of snowfall occurrence during blowing snow events using photoelectric sensors. Cold Reg Sci Technol 106–107:11–21

    Article  Google Scholar 

  • Ôura H, Ishida T, Kobayashi D, Kobayashi S, Yamada T (1967) Studies on blowing snow: part II. Physics of snow and ice. In: International conference on low temperature science, Hokkaido University, Sapporo, pp 1099–1117

  • Palerme C, Kay JE, Genthon C, L’Ecuyer T, Wood NB, Claud C (2014) How much snow falls on the Antarctic ice sheet? The Cryosphere 8:1577–1587

    Article  Google Scholar 

  • Parish TR, Bromwich DH (1987) The surface wind field over the Antarctic ice sheet. Nature 328:51–54

    Article  Google Scholar 

  • Parish TR, Cassano JJ (2003) The role of katabatic winds on the Antarctic surface wind regime. Mon Weather Rev 13:317–333

    Article  Google Scholar 

  • Parish TR, Bromwich DH (2007) Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes. Mon Weather Rev 135:1961–1973

    Article  Google Scholar 

  • Picard G, Royer A, Arnaud L, Fily M (2014) Influence of meter-scale wind-formed features on the variability of the microwave brightness temperature around Dome C in Antarctica. The Cryosphere 8:1105–1119

    Article  Google Scholar 

  • Podolskiy EA, Barbero M, Barpi F, Chambon G, Borri-Brunetto M, Pallara O, Frigo B, Chiaia B, Naaim M (2014) Healing of snow surface-to-surface contacts by isothermal sintering. The Cryosphere 8:1651–1659

    Article  Google Scholar 

  • Reijmer CH, van Meijgaard E, van den Broeke MR (2004) Numerical studies with a regional atmospheric climate model based on changes in the roughness length for momentum and heat over Antarctica. Boundary-Layer Meteorol 111(2):313–337

    Article  Google Scholar 

  • Rémy F, Ledroit M, Minster JF (1992) Katabatic wind intensity and direction over Antarctica derived from scatterometer data. Geophys Res Lett 19:1021–1024

    Article  Google Scholar 

  • Sato T, Kimura T, Ishimaru T, Maruyama T (1993) Field test of a new snow-particle counter (SPC) system. Ann Glaciol 18:149–154

    Article  Google Scholar 

  • Schmidt RA (1980) Threshold wind-speeds and elastic impact in snow transport. J Glaciol 26–94:453–467

    Article  Google Scholar 

  • Schwerdtfeger W (1984) Weather and climate of the Antarctic. Elsevier, New York 261 pp

    Google Scholar 

  • Shao Y (2008) Physics and modelling of wind erosion. Springer, Heidleberg 452 pp

    Google Scholar 

  • Smeets CJPP, van den Broeke MR (2008) Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland Ice Sheet. Boundary-Layer Meteorol 128(3):315–338

    Article  Google Scholar 

  • Trouvilliez A, Naaim-Bouvet F, Genthon C, Piard L, Favier V, Bellot H, Agosta C, Palerme C, Amory C, Gallée H (2014) A novel experimental study of aeolian snow transport in Adélie Land (Antarctica). Cold Reg Sci Technol 108:125–138

    Article  Google Scholar 

  • Trouvilliez A, Naaim-Bouvet F, Bellot H, Genthon C, Gallée H (2015) Evaluation of FlowCapt acoustic sensor for snowdrift measurements. J Atmos Ocean Technol 32(9):1630–1641

    Article  Google Scholar 

  • van den Broeke MR, van As D, Reijmer C, van de Wal R (2005) Sensible heat exchange at the Antarctic snow surface: a study with automatic weather stations. Int J Climatol 25(8):1081–1101

    Article  Google Scholar 

  • van Herwijnen A, Miller DA (2013) Experimental and numerical investigation of the sintering rate of snow. J Glaciol 59:269–274

    Article  Google Scholar 

  • van Lipzig NPM, Turner J, Colwell SR, van den Broeke MR (2004) The near-surface wind field over the Antarctic continent. Int J Climatol 24:1973–1982

    Article  Google Scholar 

  • Vignon E, Genthon C, Barral H, Amory C, Picard G, Gallée H, Casasanta G, Argentini S (2016) Momentum and heat-fluxparameterization at Dome C, Antarctica: a sensitivity study. Boundary-Layer Meteorol. doi:10.1007/s10546-016-0192-3

    Google Scholar 

  • Wamser C, Martinson DG (1993) Drag coefficients for winter Antarctic pack ice. J Geophys Res 98:12431–12437

    Article  Google Scholar 

  • Wendler G, Andre JC, Pettré P, Gosink J, Parish T (1993) Katabatic winds in Adélie Land. Antarctic meteorology and climatology: studies based on automatic weather stations. Antarct Res Ser 61:23–46

    Article  Google Scholar 

  • Wendler G, Stearns CR, Dargaud G, Parish TR (1997) On the extraordinary katabatic winds of Adélie Land. J Geophys Res 102:4463–4474

    Article  Google Scholar 

  • Wilkinson RH (1984) A method for evaluating statistical errors associated with logarithmic velocity profiles. Geo-Mar Lett 3:49–52

    Article  Google Scholar 

  • Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge 393 pp

    Book  Google Scholar 

Download references

Acknowledgements

This work would not have been possible without the financial and logistical support of the French Polar Institute IPEV (program CALVA-1013) and the financial support of the ANR-14-CE01-0001-01 (ASUMA). Additional funding by INSU/LEFE/DEPHY2, and OSUG through the CENACLAM/GLACIOCLIM observatory are also acknowledged. The authors would like to thank all the on-site personnel in Dumont d’Urville and Cap Prud’homme for their precious help in the field, in particular Philippe Dordhain for electronic and technical support, as well as the three anonymous reviewers for their useful comments that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Amory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amory, C., Gallée, H., Naaim-Bouvet, F. et al. Seasonal Variations in Drag Coefficient over a Sastrugi-Covered Snowfield in Coastal East Antarctica. Boundary-Layer Meteorol 164, 107–133 (2017). https://doi.org/10.1007/s10546-017-0242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-017-0242-5

Keywords

Navigation