Skip to main content
Log in

Seasonal influence of the sea surface temperature on the low atmospheric circulation and precipitation in the eastern equatorial Atlantic

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The air–sea interaction in the Gulf of Guinea and its role in setting precipitation at the Guinean coast is investigated in the present paper. This study is based on satellite observations and WRF simulations forced by different sea surface temperature (SST) patterns. It shows that the seasonal cold tongue setup in the Gulf of Guinea, along with its very active northern front, tends to strongly constrain the low level atmospheric dynamics between the equator and the Guinean coast. Underlying mechanisms including local SST effect on the marine boundary layer stability and hydrostatically-changed meridional pressure gradient through changes in SST gradient are quantified in WRF regarding observations and CFSR reanalyses. Theses mechanisms strongly impact moisture flux convergence near the coast, leading to the installation of the first rainy season of the West African Monsoon (WAM) system. The current study details the mechanisms by which the Atlantic Equatorial cold tongue plays a major role in the pre-onset of the boreal WAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Betts AK (1986) A new convective adjustment scheme. Part I: observational and theoretic basis. Q J R Meteorol Soc 112:677–691

    Google Scholar 

  • Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q J R Meteorol Soc 112:693–709

    Google Scholar 

  • Caniaux G, Giordani H, Redelsperger J-L, Guichard F, Key E, Wade M (2011) Coupling between the Atlantic cold tongue and the West African Monsoon in boreal spring and summer. J Geophys Res 116:C04003. doi:10.1029/2010JC006570

    Article  Google Scholar 

  • Cook KH (2015) Role of inertial instability in the West African Monsoon jump. J Geophys Res. doi:10.1002/2014JD022579

    Google Scholar 

  • De Coëtlogon G, Janicot S, Lazar A (2010) Intraseasonal variability of the ocean–atmosphere coupling in the Gulf of Guinea during boreal spring and summer. Q J R Meteorol Soc 136(S1):426–441

    Article  Google Scholar 

  • De Coëtlogon G et al (2014) Atmospheric response to sea surface temperature in the eastern equatorial Atlantic at quasi-biweekly timescales. Q J R Meteorol Soc 140:1700–1714. doi:10.1002/qj.2250

    Article  Google Scholar 

  • Doi T, Vecchi GA, Rosati AJ, Delworth TL (2012) Biases in the Atlantic ITCZ in seasonal–interannual variations for a coarse and a high resolution coupled climate model. J Clim 25:5494–5511

    Article  Google Scholar 

  • Flaounas E, Janicot S, Bastin S, Roca R (2012) The West African Monsoon onset in 2006: sensitivity to surface albedo, orography, SST and synoptic dry-air intrusions using WRF. Clim Dyn 38:685–708

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Giordani H, Caniaux G, Voldoire A (2013) Intraseasonal mixed layer heat budget in the equatorial Atlantic during the cold tongue development in 2006. J Geophys Res 118:650–671. doi:10.1029/2012JC008280

    Article  Google Scholar 

  • Hayes SP, McPhaden MJ, Wallace JM (1989) The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: weekly to monthly variability. J Clim 2:1500–1506

    Article  Google Scholar 

  • Hong S-Y, Lim J-OJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151

    Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55

    Article  Google Scholar 

  • Janjić ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Jouanno J, Marin F, du Penhoat Y, Molines JM (2013) Intraseasonal modulation of the surface cooling in the Gulf of Guinea. J Phys Oceanogr 43:382–401

    Article  Google Scholar 

  • Lavaysse C, Flamant C, Janicot S, Parker D, Lafore JP, Sultan B, Pelon J (2009) Seasonal cycle of the West African heat low: a climatological perspective. Clim Dyn. doi:10.1007/s00382-009-0553-4

    Google Scholar 

  • Leduc-Leballeur M, Eymard L, De Coëtlogon G (2011) Observation of the marine atmospheric boundary layer in the Gulf of Guinea during the 2006 boreal spring. Q J R Meteorol Soc 137(657):992–1003

    Article  Google Scholar 

  • Leduc-Leballeur M, De Coëtlogon G, Eymard L (2013) Air–sea interaction in the gulf of Guinea at intraseasonal time-scales: wind bursts and coastal precipitation in boreal spring. Q J R Meteorol Soc 139(671):387–400

    Article  Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44(17):2418–2436

    Article  Google Scholar 

  • Liu WT, Xie X, Polito PS, Xie S-P, Hashizume H (2000) Atmospheric manifestation of tropical instability wave observed by QuikSCAT and tropical rain measuring mission. Geophys Res Lett 27:2545–2548

    Article  Google Scholar 

  • Lübbecke JF, Burls N, Reason C, McPhaden M (2014) Variability in the South Atlantic Anticyclone and the Atlantic Nino Mode. J Clim 27:8135–8150

    Article  Google Scholar 

  • Marin F, Caniaux G, Bourles B, Giordani H, Gouriou Y, Key E (2009) Why were sea surface temperatures so different in the eastern equatorial Atlantic in June 2005 and 2006? J Phys Oceanogr 39:1416–1431

    Article  Google Scholar 

  • Meynadier R, de Coetlogon G, Bastin S, Eymard L, Janicot S (2014) Sensitivity testing of WRF parametrizations on air–sea interaction and its impact on water cycle in the gulf of Guinea. Q J R Meteorol Soc. doi:10.1002/qj.2483

    Google Scholar 

  • Nguyen H, Thorncroft CD, Zhang C (2011) Guinean coast rainfall of the West African Monsoon. Q J R Meteorol Soc 137:1828–1840

    Article  Google Scholar 

  • Patricola C, Li M, Xu Z, Saravanan R, Hsie J-S (2012) An investigation of tropical Atlantic bias in a high-resolution coupled regional climate model. Clim Dyn 39(9):2443–2463

    Article  Google Scholar 

  • Perlin N, de Szoeke SP, Chelton DB, Samelson RM, Skyllingstad ED, O’Neill LW (2014) Modeling the atmospheric boundary layer wind response to mesoscale sea surface temperature perturbations. Mon Weather Rev 142:4284–4307. doi:10.1175/MWR-D-13-00332.1

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Caset KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Richter I, Behera SK, Doi T, Taguchi B, Masumoto Y, Xie S-P (2014) What controls equatorial Atlantic winds in boreal spring? Clim Dyn 43(11):3091–3104

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan H, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y, Chuang H, Juang H, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds R, Rutledge G, Goldberg M (2010) Supplement to the NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note-475 + STR. NCAR, Boulder, CO. http://www.mmm.ucar.edu/wrf/users/docs/arwv3.pdf. Accessed 20 Oct 2014

  • Small RJ, de Szoeke SP, Xie SP, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319

    Article  Google Scholar 

  • Stevens B, Duan JJ, McWilliams JC, Munnich M, Neelin JD (2002) Entrainment, rayleigh friction, and boundary layer winds over the tropical pacific. J Clim 15(1):30–44

    Article  Google Scholar 

  • Sweet W, Fett R, Kerling J, La Violette P (1981) Air–sea interaction effects in the lower troposphere across the north wall of the Gulf Stream. Mon Weather Rev 109(5):1042–1052

    Article  Google Scholar 

  • Taylor CM (2008) Intraseasonal land–atmosphere coupling in the West African monsoon. J Clim 21:6636–6648

    Article  Google Scholar 

  • Thorncroft CD, Nguyen H, Zhang C, Payrille P (2011) Annual cycle of the West African Monsoon: regional circulations and associated water vapour transport. Q J R Meteorol Soc 137:129–147

    Article  Google Scholar 

  • Wallace JM, Mitchell TP, Deser C (1989) The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: seasonal and interannual variability. J Clim 2(12):1492–1499

    Article  Google Scholar 

  • Yin B, Albrecht BA (2000) Spatial variability of atmospheric boundary layer structure over the eastern equatorial Pacific. J Clim 13:1574–1592

    Article  Google Scholar 

  • Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results received funding from the EU FP7/2007-2013 under grant agreement no. 603521, project PREFACE. TMI data are produced by Remote Sensing Systems and sponsored by the NASA Earth Sciences Program. Data are available at www.remss.com. QuikScat data are sponsored by the NASA Ocean Vector Winds Science Team. The authors wish to thank the reviewers for their constructive remarks. This work benefited from the Institut Pierre-Simon Laplace’s server and data storage (Ciclad).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Meynadier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meynadier, R., de Coëtlogon, G., Leduc-Leballeur, M. et al. Seasonal influence of the sea surface temperature on the low atmospheric circulation and precipitation in the eastern equatorial Atlantic. Clim Dyn 47, 1127–1142 (2016). https://doi.org/10.1007/s00382-015-2892-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2892-7

Keywords

Navigation