Skip to main content
Log in

Soluble and insoluble impurities along the 950 m deep Vostok ice core (Antarctica) — Climatic implications

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Simultaneous measurements of soluble and insoluble impurities were made on the 950 m deep Vostok (78°30′S, 106°54′E, 3420 m a.s.l.) ice core, spanning roughly 50000 yr, using various analytical techniques. We observed higher continental (×37) and marine (×5.1) inputs during the last glacial age than during the Holocene stage. A study of microparticle compositions and of volcanic indicators (Zn, H2SO4), shows that the high observed crustal input is not due to enhanced volcanism, but is rather of continental eolian origin. For the first time, the ionic balance along a deep ice core is established, mainly used in discussing the evolution of the Cl to Na ratio over central East Antarctica with changing climatic conditions: the presence of relatively high amounts of Na2SO4 in the marine aerosol at the Vostok site during the Holocene is demonstrated. Comparison with the Dome C (74°39′S, 124°10′E, 3040 m a.s.l.) results confirms the chronology of the major events: (i) maximum terrestrial input around the last glacial maximum (∼18 ka BP); (ii) end of the high continental flux over Antarctica near 13 ka BP; (iii) marine input varying in an opposing manner to isotopic fluctuations with rather high concentrations beginning to decrease when isotopic values increase and reaching Holocene values at the end of the transition between cold and warmer climate conditions. Detailed comparison with results provided by deep ice cores from other sites which are probably more influenced by oceanic air masses seems to indicate that most of the aerosol reaching central East Antarctica travel over large distance probably at rather high altitude through the troposphere. We can consider that central East Antarctica is well representative of the upper part of the troposphere (higher than i.e., 3000 m) and should, therefore, provide valuable data for global and Antarctic paleoclimatological models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barkov, N. I., Korotkevich, E. S., Gordienko, F. G., and Kotlyakov, V. M., 1977, The isotope analysis of ice cores from Vostok station (Antarctica), to the depth of 950 m, UGGI International Symposium on Isotopes and Impurities in Snow and Ice, Grenoble, August 1975, AIHS Pub. 118, pp. 382–387.

  • Boutron C., 1980, Respective influence of global pollution and volcanic eruptions on the past variations of the trace metals content of Antarctic snow since 1880's, J. Geophys. Res. 85, 7426–7432.

    Google Scholar 

  • Briat M., Royer A., Petit J. R., and Lorius C., 1982, Late glacial input of eolian continental dust in the Dome C ice core: additional evidence from individual microparticle analysis. Ann. Glaciol. 3, 27–31.

    Google Scholar 

  • Climap Project Members, 1976, Science, 191, 1131–1137.

    Google Scholar 

  • Cragin, J. M., Herron, M. M., Langway, C. C., and Klouda, G., 1977, Interhemispheric comparison of changes in the composition of atmospheric precipitation during the late cenozoic era, in J. Dunbar Maxwell (ed.), Polar Oceans (Proceedings of the Polar Oceans Conference, Montreal, 1974), pp. 617–631, Arctic Institute of North America.

  • Dansgaard W. and Johnsen S. I., 1969, A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glaciol. 8, 53, 215–222.

    Google Scholar 

  • Delany A. C., Pollock W. H., and Shedlovsky J. P., 1973, Tropospheric aerosol: the relative contribution of marine and continental components. J. Geophys. Res. 78, 6249–6265.

    Google Scholar 

  • Delmas R. and Boutron C., 1980, Are the past variations of the stratospheric sulfate burden recorded in central Antarctic snow and ice layers? J. Geophys. Res. 85, 5645–5649.

    Google Scholar 

  • Delmas, R., Barnola, J. M., and Legrand, M., 1982a, Gas derived aerosol in central Antarctic snow and ice: the case of sulfuric and nitric acids, Ann. Glaciol. 3.

  • Delmas R., Briat M., and Legrand M., 1982b, Chemistry of South Polar snow, J. Geophys. Res. 87, 4314–4318.

    Google Scholar 

  • Eriksson E., 1960, Yearly circulation of chloride and sulfur in nature, Meteorological, geochemical and pedological implications. Part. II, Tellus, 12, 63–109.

    Google Scholar 

  • Gordienko, F. G., Kotlyakov, V. M., Barkov, N. I., and Korotkevich, Ye. S., 1982, New results of oxygen isotope studies of the 1412 m Vostok ice core, Data of Glaciological studies, Acad. of Sciences of the USSR, No. 46, pp. 168–174.

  • Johnsen S. J., Dansgaard W., Clausen H. B., and Langway C. C.Jr, 1972, Oxygen isotope profiles through Antarctic and Greenland Ice Sheets, Nature 235, 429–434.

    Google Scholar 

  • Korotkevich, Yes. S., Petrov, V. N., Barkov, N. I., Sukhonosova, L. I., Dmitriyev, D. N., and Portnov, V. G., 1978, Results of the study of the vertical structure of Antarctic ice sheet in the vicinity of Vostok, Antarctica, Inf. Bull. Sov. Ant. Exp., No. 97, pp. 135–148.

  • Lambert, G., Ardouin, B., Sanak, J., Lorius, C., and Pourchet, M., 1977, Accumulation of snow and radioactive debris in Antarctica: a possible refined radiochronology beyond reference levels, UGGI International Symposium on Isotopes and Impurities in Snow and Ice, Grenoble, August 1975, AIHS Pub. No. 118, pp. 146–158.

  • Legrand, M., 1980, Mesure de l'acidité et de la conductivité électrique des précipitations antarctiques, Thèse de 3e cycle Grenoble, France (Pub. No. 316 du Laboratoire de Glaciologie et Géophysique de l'Environnement).

  • Legrand M. R., Aristarain A. J., and Delmas R. J., 1982, Acid titration of polar snow, Anal. Chem. 54, 1336–1339.

    Google Scholar 

  • Legrand, M., De Angelis, M., and Delmas, R. J., 1984, ppb level ion-chromatographic determination of Na+, NH4 +, K+, Cl-, NO3 - and SO4 2- in Antarctic snow and ice, Anal. Chim. Acta, in press.

  • Lorius, C. and Merlivat, L., 1977, Distribution of mean surface stable isotopes in East Antarctica; observed changes with depth in coastal area (Union Géodésique et Géophysique Internationale—Association Internationale des Sciences Hydrologiques—Commission des neiges et glaces). Symposium Isotopes et Impuretés dans les neiges et glaces, Actes du Colloque de Grenoble, août–septembre 1975, pp. 138–45 (IASH-AISH Publication No. 118).

  • Lorius C., Merlivat L., Jouzel J., and Pourchet M., 1979, A 30 000 year isotope climatic record from Antarctic ice, Nature 230, 644–648.

    Google Scholar 

  • Martens C. S., Wesolowski J. J., Harriss R. C., and Kaifer R., 1973, Chlorine loss from Puerto Rican and San Francisco Bay Area Marine aerosols, J. Geophys. Res., 78, 8778–8792.

    Google Scholar 

  • Patterson E. M. and Gillette D. A., 1977, Commonalities in measured size distributions for aersols having a soil-derived component, J. Geophys. Res. 82, 2074–2082.

    Google Scholar 

  • Petit J. R., Briat M., and Royer A., 1981, Ice age aerosol content from East Antarctic ice core samples and past wind strength, Nature, 293, 391–394.

    Google Scholar 

  • Pytkowicz R. M. and Kester D. R., 1971, The physical chemistry of sea water. Oceanographic and marine biology, Ann. Rev. 9, 11–60.

    Google Scholar 

  • Ragone, S. E. and Finelli, R. V., 1972, Cationic analysis of the Byrd Station, Antarctica, ice core, USA CREEL Special Report 180.

  • Raynaud D., Lorius C., Budd W. F., and Young N. W., 1979, Ice flow along an I.A.G.P. flow line and interpretation of data from an ice core in Terre Adelie, Antarctica. J. Glaciol. 24, 103–115.

    Google Scholar 

  • Raynaud D. and Whillans I., 1982, Air content of the Byrd core and past changes in the West Antarctic ice sheet, Ann. Glaciol. 3, 269–273.

    Google Scholar 

  • Robbins R. C., Cadle R. D., and Ekchard D. L., 1959, The conversion of sodium chloride to hydrogen chloride in the atmosphere, J. Meteorol. 16, 53–56.

    Google Scholar 

  • Robin G. de Q, 1977, Ice cores and climatic changes, Phil. Trans. Royal Soc. Lond. B 280, 143–168.

    Google Scholar 

  • Schumsky, P. A., Korotkevich, Ye. S., and Larina, T. B., 1980, The age of the ice in bore holes at Vostok and Vostok 1 Stations. Inf. Bull. Sov. Ant. Exp. No. 100, pp. 41–48.

  • Stumm W. and Morgan J. J., 1970, Aquatic Chemistry, Wiley, New York.

    Google Scholar 

  • Taylor S. R., 1964, Abundance of chemical elements in the continental crust: a new table. Geochim and Cosmochim. Acta 28, 1273–1285.

    Google Scholar 

  • Whillans I., 1981, Reaction of the accumulation zone portions of glaciers to climatic change, J. Geophys. Res. 86 4274–4282.

    Google Scholar 

  • Wilson A. T., Hendy C. H., and Harrower K. L., 1978, The possibilities of determining past solar activity and calculating carbon 14 dating corrections from chemical analysis of polar ice cores, New Zealand Antarctic Revue 1, 58–62.

    Google Scholar 

  • Wilson A. T. and Hendy C. H., 1981, The chemical stratigraphy of polar ice sheets: a method of dating ice cores. J. Glaciol. 27, 3–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Angelis, M., Legrand, M., Petit, J.R. et al. Soluble and insoluble impurities along the 950 m deep Vostok ice core (Antarctica) — Climatic implications. J Atmos Chem 1, 215–239 (1983). https://doi.org/10.1007/BF00058730

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058730

Key words

Navigation