Skip to main content
Log in

Three events of Saharan dust deposition on the Mont Blanc glacier associated with different snow-colonizing bacterial phylotypes

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

A preliminary study has demonstrated that the structure and species composition of microbial communities associated with events of dust deposition from the Sahara Desert to the Mont Blanc glacier varied considerably between samples originating from different time periods. Even for depositions within a single month, the dominant microbial phylotypes and candidates to colonize the snow pack were different. It is therefore highly probable that the structure and species composition of microbial communities will be different between any events of the kind. Apparently, the phenomenon does not correlate with the time the dust stays in the snow cover and consequently with the probable development of microorganisms in situ (three months, one month, and one week). The reasons for the variation may be the differences in conditions in the epicenter of a specific North African dust storm, as well as the history of the dust transport in the atmosphere. The candidates for joining the snow biome of Mont Blanc turned out to be different for three dust events (DEs) and belong to different, mostly minor, phylotypes related to Crossiella cryophilus (Actinobacteria), Devosia limi (α-Proteobacteria), Deinococcus claudionis Deinococcus-Thermus), Anabaena sp. (Cyanobacteria), and Hymenobacter soli (Bacteroidetes). Since all these phylotypes have been previously isolated from soil samples of the Antarctic and Arctic, Arctic snow and ice, and the Alpine belt soils and sedimentary rocks of the glacier bed, they were tentatively ascribed to the group of snow pack colonizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, R.I., Ludwig, W., and Schleifer, K.H., Phylogenetic Identification and in situ Detection of Individual Microbial Cells Without Cultivation, Microbiol. Rev., 1995, vol. 59, pp. 143–169.

    PubMed  CAS  Google Scholar 

  2. Zézé, A., Mutch, L.A., and Young, J.P.W., Direct Amplification of nodD from Community DNA Reveals the Genetic Diversity of Rhizobium leguminosarum in Soil, Environ. Microbiol., 2001, vol. 3, pp. 363–370.

    Article  PubMed  Google Scholar 

  3. Bulat, S.A., Alekhina, I.A., Lipenkov, V.Ya., Lukin, V.V., Marie, D., and Petit, Zh.R., Cell Concentrations of Microorganisms in Glacial and Lake Ice of the Vostok Ice Core, East Antarctica, Mikrobiologiya, 2009, vol. 78, no. 6, pp. 850–852 [Microbiology (Engl. Transl.), vol. 78, no. 6, pp. 808–810].

    Google Scholar 

  4. Whitman, W.B., Coleman, D.C., and Wiebe, W.J., Prokaryotes: The Unseen Majority, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 6578–6583.

    Article  PubMed  CAS  Google Scholar 

  5. Thomas, W.H. and Duval, B., Snow Algae: Snow Albedo Changes, Algal-Bacterial Interrelationships, and Ultraviolet Radiation Effects, Arctic Alpine Res., 1995, vol. 27, no. 4, pp. 389–399.

    Article  Google Scholar 

  6. Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitenberger, R., Zibuschka, F., and Puxbaum, H., The Contribution of Bacteria and Fungal Spores to the Organic Carbon Content of Cloud Water, Precipitation and Aerosols, Atmos. Res., 2002, vol. 64, pp. 109–119.

    Article  CAS  Google Scholar 

  7. Segawa, T., Miyamoto, K., Ushida, K., Agata, K., Okada, N., and Kohshima, S., Seasonal Change in Bacterial Flora and Biomass in Mountain Snow from the Tateyama Mountains, Japan, Analyzed by 16S rRNA Gene Sequencing and Real-Time PCR, Appl. Environ. Microbiol., 2005, vol. 71, no. 1, pp. 123–130.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, S. and Hou, S., Ma, X., Qin, D., and Chen, T., Culturable Bacteria in Himalayan Ice in Response to Atmospheric Circulation, Biogeosciences, 2007, vol. 4, pp. 1–9.

    Article  Google Scholar 

  9. Zhang, S., Hou, S., Wu, Y., and Qin, D., Bacteria in Himalayan Glacial Ice and Its Relationship to Dust, Biogeosciences, 2008, vol. 5, no. 6, pp. 1741–1750.

    Article  CAS  Google Scholar 

  10. Zhang, X.F., Yao, T.D., Tian, L.D., Xu, S.J., and An, L.Z., Phylogenetic and Physiological Diversity of Bacteria Isolated from Puruogangri Ice Core, Microb. Ecol., 2008, vol. 55, pp. 476–488.

    Article  PubMed  CAS  Google Scholar 

  11. Moulin, C., Lambert, C.E., Dulac, F., and Dayan, U., Control of Atmospheric Export of Dust from North Africa by the North Atlantic Oscillation, Nature, 1997, vol. 387, no. 6634, pp. 691–694.

    Article  CAS  Google Scholar 

  12. Griffin, D.W., Garrison, V.H., Herman, J.R., and Shinn, E.A., African Desert Dust in the Caribbean Atmosphere: Microbiology and Public Health, Aerobiologia, 2001, vol. 17, pp. 203–213.

    Article  Google Scholar 

  13. Prospero, J.M., Blades, E., Mathison, G., and Naidu, R., Interhemispheric Transport of Viable Fungi and Bacteria from Africa to the Caribbean with Soil Dust, Aerobiologia, 2005, vol. 21, pp. 1–19.

    Google Scholar 

  14. Bonnet, S., Guieu, C., Chiaverini, J., Ras, J., and Stock, A., Effect of Atmospheric Nutrients on the Autotrophic Communities in a Low Nutrient, Low Chlorophyll System, Limnol. Oceanogr., 2005, vol. 50, pp. 1810–1819.

    Article  CAS  Google Scholar 

  15. Pulido-Villena, E., Morales-Baquero, R., and Reche, I., Evidence of an Atmospheric Forcing of Bacterioplankton and Phytoplankton Dynamics in a High Mountain Lake, Aquat. Sci., 2008, vol. 70, pp. 1–9.

    Article  CAS  Google Scholar 

  16. Eglinton, T.I., Eglinton, G., Dupont, L., Sholkovitz, E.R., Montlucon, D., and Reddy, C.M., Composition, Age, and Provenance of Organic Matter in NW African Dust over the Atlantic Ocean, Geochem. Geophys. Geosyst., 2002, vol. 3, no. 8, p. 1050.

    Article  Google Scholar 

  17. De Angelis, M. and Gaudichet, A., Saharan Dust Deposition over Mont Blanc (French Alps) During the Last 30 Years, Tellus, 1991, vol. 43B, pp. 61–75.

    Google Scholar 

  18. Vincent, C., Le Meur E., Six D., Possenti P., Lefebvre E., Funk M. Climate Warming Revealed by Englacial Temperatures at Col du Dome (4250 m, Mont Blanc Area), Geophys. Rev. Lett., 2007, vol. 34, no. 16, p. L16502.

    Article  Google Scholar 

  19. The MEPAG Special Regions—Science Analysis Group // Findings of the Mars Special Regions Science Analysis Group, Astrobiology, 2006, vol. 6, no. 5, pp. 677–732.

    Article  Google Scholar 

  20. Preunkert, S., Wagenbach, D., Legrand, M., and Vincent, C., Col du Dome (Mt Blanc Massif, French Alps) Suitability for Ice-Core Studies in Relation with Past Atmospheric Chemistry Over Europe, TELLUS, 2000, vol. 52B, no. 3, pp. 993–1012.

    CAS  Google Scholar 

  21. Bulat, S.A., Alekhina, I.A., Blot, M., Petit, J.R., De Angelis, M., Wagenbach, D., Lipenkov, V.Ya., Vasilyeva, L.P., Wloch, D.M., Raynaud, D., and Lukin, V.V., DNA Signature of Thermophilic Bacteria from the Aged Accretion Ice of Lake Vostok, Antarctica: Implications for Searching for Life in Extreme Icy Environments, Int. J. Astrobiol., 2004, vol. 3, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

  22. Lavire, C., Normand, P., Alekhina, I.A., Bulat, S.A., Prieur, D., Birrien, J.L., Fournier, P., Hänni, C., and Petit, J.R., Presence of Hydrogenophilus thermoluteolus DNA in Accretion Ice in the Subglacial Lake Vostok, Antarctica, Assessed Using rrs, cbb and hox, Environ. Microbiol., 2006, vol. 8, no. 12, pp. 2106–2114.

    Article  PubMed  CAS  Google Scholar 

  23. Polymenakou, P.N.V., Mandalakis, M., Stephanou, E.G., and Tselepides, A., Particle Size Distribution of Airborne Microorganisms and Pathogens During an Intense African Dust Event in the Eastern Mediterranean, EHP, 2008, vol. 116, no. 3, pp. 292–296.

    PubMed  Google Scholar 

  24. Callegan, R.P., Nobre, M.F., McTernan, P.M., Battista, J.R., Navarro-Gonález, R., McKay, C.P., Costa, M.S., and Rainey, F.A., Description of Four Novel Psychrophilic, Ionizing Radiation-Sensitive Deinococcus Species from Alpine Environments, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, no. 5, pp. 1252–1258.

    Article  PubMed  CAS  Google Scholar 

  25. Kuhlman, K.R., Allenbach, L.B., Ball, C.L., Fusco, W.G., La Duc, M.T., Kuhlman, G.M., Anderson, R.C., Stuecker, T., Erickson, I.K., Benardini, J., and Crawford, R.L., Enumeration, Isolation, and Characterization of Ultraviolet (UV-C) Resistant Bacteria from Rock Varnish in the Whipple Mountains, California, ICARUS, 2005, vol. 174, no. 2, pp. 585–595.

    Article  CAS  Google Scholar 

  26. Saul, D.J., Aislabie, J.M., Brown, C.E., Harris, L., and Foght, J.M., Hydrocarbon Contamination Changes the Bacterial Diversity of Soil from Around Scott Base, Antarctica, FEMS Microbiol. Ecol., 2005, vol. 53, pp. 141–155.

    Article  PubMed  CAS  Google Scholar 

  27. Foght, J., Aislabie, J., Turner, S., Brown, C.E., Ryburn, J., Saul, D.J., and Lawson, W., Culturable Bacteria in Subglacial Sediments and Ice from Two Southern Hemisphere Glaciers, Microb. Ecol., 2004, vol. 47, no. 4, pp. 329–340.

    Article  PubMed  CAS  Google Scholar 

  28. Pointing, S.B., Warren-Rhodes, K.A., Lacap, D.C., Rhodes, K.L., and McKay, C.P., Hypolithic Community Shifts Occur as a Result of Liquid Water Availability Along Environmental Gradients in China’s Hot and Cold Hyperarid Deserts, Environ. Microbiol., 2007, vol. 9, no. 2, pp. 414–424.

    Article  PubMed  CAS  Google Scholar 

  29. Larose, C., Berger, S., Ferrari, C., Navarro, E., Dommergue, A., Schneider, D., and Vogel, T.M., Microbial Sequences Retrieved from Environmental Samples from Seasonal Arctic Snow and Meltwater from Svalbard, Norway, Extremophiles, 2010, vol. 14, no. 2, pp. 205–212.

    Article  PubMed  Google Scholar 

  30. Rivkina, E.M., Friedmann, E.I., Mckay, C.P., and Gilichinsky, D.A., Metabolic Activity of Permafrost Bacteria below the Freezing Point, Appl. Environ. Microbiol., 2000, vol. 66, no. 8, pp. 3230–3233.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. S. Chuvochina or S. A. Bulat.

Additional information

Original Russian Text © M.S. Chuvochina, I.A. Alekhina, P. Normand, J.-R. Petit, S.A. Bulat, 2011, published in Mikrobiologiya, 2011, Vol. 80, No. 1, pp. 129–135.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuvochina, M.S., Alekhina, I.A., Normand, P. et al. Three events of Saharan dust deposition on the Mont Blanc glacier associated with different snow-colonizing bacterial phylotypes. Microbiology 80, 125–131 (2011). https://doi.org/10.1134/S0026261711010061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261711010061

Keywords

Navigation