Skip to main content
Log in

Three-dimensional numerical simulation for mechanized tunnelling in soft ground: the influence of the joint pattern

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The main purpose of this study was to provide a three-dimensional numerical model, which would allow the tunnel lining behaviour and the displacement field surrounding the tunnel to be evaluated. Most of the processes that occur during mechanized excavation have been simulated in this model. The influence of the lining joint pattern, including segmental lining joints and their connections, has in particular been taken into consideration. The impact of the processes during mechanized excavation, such as the grouting pressure and the jacking forces in the structural forces induced in the tunnel lining, has been presented. These values depend on the tunnel advancement. However, a negligible influence of the joint pattern on the ground displacement field surrounding the tunnel has been observed. Generally, a variation in the structural forces in successive rings along the tunnel axis has been found in a staggered segmental lining, indicating the necessity of simulating the joints in the tunnel lining and using a full three-dimensional numerical model to obtain an accurate estimation. In addition, the considerable influence of the coupling effect between successive rings on the lining behaviour has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Addenbrooke TI, Potts DM, Puzrin AM (1997) The influence of pre-failure soil stiffness on the numerical analysis of tunnel construction. Géotechnique 47(3):693–712

    Article  Google Scholar 

  2. Afifipour M, Sharifzadeh M, Shahriar K, Jamshidi H (2011) Interaction of twin tunnels and shallow foundation at Zand underpass, Shiraz metro, Iran. Tunnelling and Underground Space Technology 26:356–363

    Article  Google Scholar 

  3. Arnau O, Molins C (2011) Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 1: test configuration and execution. Tunn Undergr Space Technol 26:764–777

    Article  Google Scholar 

  4. Arnau O, Molins C (2011) Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 2: numerical simulation. Tunn Undergr Space Technol 26:778–788

    Article  Google Scholar 

  5. Arnau O, Molins C (2012) Three dimensional structural response of segmental tunnel linings. Eng Struct 44:210–221

    Article  Google Scholar 

  6. Barla G, Barla M, Bonini M, Gamba F et al (2005) Two and three dimensional modelling and monitoring of the Metro Torino. 11th International conference of Iacmag, Turin (Italy)

  7. Bernat S, Cambou B (1998) Structure interaction in shield tunnelling in soft soil. Comput Geotech 22(3/4):221–242

    Article  Google Scholar 

  8. Bezuijen A, Talmon A (2004) Grout pressures around a tunnel lining, influence of grout consolidation and loading on lining. Proceedings of world tunnel congress and 13th ITA assembly, Singapore, pp 22–27

  9. Bilotta E, Russo G (2013) Internal forces arising in the segmental lining of an EPB bored tunnel. J Geotech Geoenviron Eng. doi:10.1061/(ASCE)GT.1943-5606.0000906

    Google Scholar 

  10. Blom CB (2002) Design philosophy of concrete linings for tunnel in soft soils. Ph.D. dissertation, Delft University, Netherlands

  11. Blom C, Van der Horst E, Jovanovis P (1999) Three-dimensional structural analyses of the shield-driven “Green Heart” tunnel of the high-speed line South. Tunn Undergr Space Technol 14(2):217–224

    Article  Google Scholar 

  12. Bolton M, Dasari G, Britto A et al (1994) Putting small-strain non-linearity into modified cam clay model. In: Proceedings of the 8th international conference on computer methods and advances in geomechanics, Morgantown, West Virginia, pp 537–542

  13. Boubou R (2010) Prise en compte du mode de pressurisation du front et de la géologie dans l’étude de l’impact du creusement de tunnels. Ph.D. dissertation, INSA de Lyon. N° d’ordre 2010ISAL0093

  14. Brinkgrave R, Broere W (2003) The influence of tunnel boring onfoundations and buildings in urban areas—a numerical study. Int. Workshop on Geotechnics of soft soil - Theory and Practice, Vermeer, Schweiger, Karstunen & Cudny (eds.) 2003 VGE, pp 257–263

  15. Broere W, Brinkgreve R (2002) Phased simulation of a tunnel boring process in soft soil. Numerical Methods in Geotechnical Engineering, Mestat (ed.) 2002, Presses de l'ENPC/LCPC, Paris, pp 529–536

  16. Cavalaro S, Aguado A (2011) Packer behaviour under simple and coupled stresses. Tunn Undergr Space Technol 28:159–173

    Article  Google Scholar 

  17. Cavalaro S, Blom C, Walraven J, Aguado A (2012) Structural analysis of contact deficiencies in segmented lining. Tunn Undergr Space Technol 26:734–749

    Article  Google Scholar 

  18. Cheng S (1985) The analysis of the joint mechanism of shield-driven tunnel lining. M. Phil. Thesis, Department of Geotechnics, Tongji University, P. R. China

  19. Chong P, Tang SK, Lim T, Sugawara S, Furusono T et al (2004) Bored tunnel lining design in soft soils—a comparison between analytical and numerical analyses. Tunnelling and Underground Space Technology. Underground space for sustainable urban development. Proceedings of the 30th ITA-AITES World Tunnel congress, 19(4–5), p 456

  20. Croce A (2011) Analisi dati di monitoraggio del rivestimento della galleria del passante ferroviario di Bologna. Degree dissertation, Polytechnics of Turin, Italy

  21. Dias D, Kastner R (2012) Movements caused by the excavation of tunnels using face pressurized shields—analysis of monitoring and numerical modelling results. Eng Geol 152(2013):17–25. doi:10.1016/j.enggeo.2012.12.002

    Google Scholar 

  22. Dias D, Kastner R (2000) Slurry shield tunnelling: comparison between in situ data and three dimensional numerical simulations. Geotech-Year 27–30 Nov. 2000, Bangkok, Thailand

  23. Dias D, Kastner R, Maghazi M et al (2000) Three dimensional simulation of slurry shield tunnelling. Proc. of the International Symposium on Geotechnical aspects of underground construction in soft ground. Balkema, Rotterdam, pp 351–356

  24. Do NA, Dias D, Oreste PP, Djeran-Maigre I (2013) 2D numerical investigation of segmental tunnel lining behaviour. Tunn Undergr Space Technol 37:115–127

    Article  Google Scholar 

  25. Do NA, Dias D, Oreste PP, Djeran-Maigre I et al (2013) 2D tunnel numerical investigation—the influence of the simplified excavation method on tunnel behaviour. Geotech Geol Eng doi:10.1007/s10706-013-9690-y

  26. Fattah MY, Shlash KT, Salim NM (2013) Prediction of settlement trough induced by tunneling in cohesive ground. Acta Geotech 8:167–179

    Article  Google Scholar 

  27. Franzius J (2004) Behaviour of buildings due to tunnel induced subsidence. Ph.D. dissertation, Imperial College of Science, Technology and Medicine, University of London

  28. Franzius J, Potts D (2005) Influence of mesh geometry on three-dimensional finite element analysis of tunnel excavation. ASCE Int J Geomech 5(3):256–266

    Article  Google Scholar 

  29. Hasimoto T, Brinkman J, Konda T, Kano Y, Fedema et al (2004) Simultaneous backfill grouting, pressure development in construction phase and in the long-term. Proceeding of the 30th ITA-AITES World Congress, Singapore, pp 52–59

  30. Hefny A, Chua H (2006) An investigation into the behaviour of jointed tunnel lining. Tunn Undergr Space Technol 21:428

    Article  Google Scholar 

  31. Hejazi Y, Dias D, Kastner R (2008) Impact of constitutive models on the numerical analysis of underground constructions. Acta Geotech 3:251–258

    Article  Google Scholar 

  32. Hordijk D, Gijsbers F (1996) Laboratoriumproeven tunnelsegmenten. Tech. rep., TNO-rapport 96-CON-R0708/03 (COB-K100-rapport K100-W-026), TNO Bouw

  33. Hossaini S, Shaban M, Talebinejad A et al (2012) Relationship between twin tunnels distance and surface subsidence in soft ground of Tabriz metro—Iran. 12th coal operator’s conference, University of Wollongong & the Australasian Institute of mining and Metallurgy, pp 163–168

  34. Hudoba I (1997) Contribution to static analysis of load-bearing concrete tunnel lining built by shield-driven technology. Tunn Undergr Space Technol 12(1):55–58

    Article  Google Scholar 

  35. Itasca Consulting Group (2009) FLAC fast Lagrangian analysis of continua, version 4.0. User’s manual. FLAC fast Lagrangian analysis of continua, version 4.0. User’s manual

  36. Jenck O, Dias D (2004) Analyse tridimensionnelle en différences finies de l’interaction entre une structure en béton et le creusement d’un tunnel à faible profondeur. Géotechnique 54(8):519–528

    Article  Google Scholar 

  37. Jenck O, Dias D (2003) Numerical analysis of the volume loss influence on building during tunnel excavation. Third International FLAC Symposium—FLAC and FLAC3D numerical modelling in geomechanics, Sudbury, Canada

  38. JSCE (1996) Japanese standard for shield tunnelling, Tunnel Engineering Committee English Edition of the Japanese Standard for Tunneling, Subcommittee Japan Society of Civil Engineers, the third edition, Tokyo

  39. Kasper T, Meschke G (2004) A 3D finite element simulation model for TBM tunnelling in soft ground. Int J Numer Anal Methods Geomech 28:1441–1460

    Article  MATH  Google Scholar 

  40. Kasper T, Meschke G (2006) A numerical study of the effect of soil and grout material properties and cover depth in shield tunnelling. Comput Geotech 33(4–5):234–247

    Article  Google Scholar 

  41. Kasper T, Meschke G (2006) On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling. Tunn Undergr Space Technol 21:160–171

    Article  Google Scholar 

  42. Klappers C, Grübl F, Ostermeier B (2006) Structural analyses of segmental lining—coupled beam and spring analyses versus 3D-FEM calculations with shell elements. Tunn Undergr Space Technol 21:254–255

    Article  Google Scholar 

  43. Lambrughi A, Rodríguez LM, Castellanza R (2012) Development and validation of a 3D numerical model for TBM–EPB mechanised excavations. Comput Geotech 40:97–113

    Article  Google Scholar 

  44. Lee K, Rowe R (1991) An analysis of three-dimensional ground movements: the Thunder Bay tunnel. Can Geotech J 28:25–41

    Article  Google Scholar 

  45. Lu L, Lu X, Fan P et al (2006) Full-ring experimental study of the lining structure of Shanghai Changjiang tunnel. 4th International conference on earthquake engineering Taipei, Taiwan 12–13 October 2006

  46. Lu L, Lu X, Fan P, Guo Z et al (2005) Experimental study of a double-circular shield tunnel lining. Proceedings of the first international conference on advances in experimental structural engineering, Nagoya, Japan, 127–134 July 2005

  47. Maidl B, Herrenknecht M, Anheuser L (1996) Mechanized shield tunnelling. Ernst and Sohn, Berlin

    Google Scholar 

  48. Maranha JR, Neves EM (2000) 3D analysis of ground displacements due to the construction of Lisbon underground. Proceedings of the international conference on geotechnical & geological engineering (GeoEng 2000), Melbourne

  49. Mašin D (2009) 3D modelling of a NATM tunnel in high K0 clay using two different constitutive models. J Geotech Geoenviron Eng ASCE 135(9):1326–1335

    Article  Google Scholar 

  50. Mašin D, Herle I (2005) Numerical analyses of a tunnel in London clay using different constitutive models. In: Proceedings of the 5th international symposium TC28 geotechnical aspects of underground construction

  51. Medina Rodríguez L (2000) Estudio de los movimientos originados por la excavación de túneles con escudos de presión de tierras en los suelos tosquizos de Madrid. Ph.D. dissertation, University of La Coruña (in Spanish)

  52. Medina Rodríguez L (2008) Modelizacion de la excavacion de tuneles mediante EPB: Diferencias finitas y elementos discretos. Technical seminar: tunnels with EPB simulation and control of TBM Barcelona, pp 73–104

  53. Melis M, Medina L, Rodriguez J (2002) Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension. Can Geotech J 39:1273–1287

    Article  Google Scholar 

  54. Migliazza M, Chiorboli M, Giani G (2009) Comparison of analytical method, 3D finite element model with experimental subsidence measurements resulting from the extension of the Milan underground. Comput Geotech 36:113–124

    Article  Google Scholar 

  55. Möller S (2006) Tunnel induced settlements and structural forces in linings. Ph.D. dissertation, Stuttgart University

  56. Möller S, Vermeer P (2008) On numerical simulation of tunnel installation. Tunn Undergr Space Technol 23:461–475

    Article  Google Scholar 

  57. Mollon G (2010) Etude déterministe et probabiliste du comportement des tunnels. Ph.D. dissertation, INSA de Lyon. N° d’ordre 2010ISAL0110

  58. Mollon G, Dias D, Soubra A (2013) Probabilistic analyses of tunnelling-induced ground movements. Acta Geotech 8:181–199

    Article  Google Scholar 

  59. Mroueh H, Shahrour I (2008) A simplified 3D model for tunnel construction using tunnel boring machines. Tunn Undergr Space Technol 23:38–45

    Article  Google Scholar 

  60. Muniz de Farias M, Júnior A, Pacheco de Assis A (2004) Displacement control in tunnels excavated by the NATM: 3-D numerical simulations. Tunn Undergr Space Technol 19(3):283–293

    Article  Google Scholar 

  61. Negro A, Queiroz B (1999) Prediction and performance of soft ground tunnels. Geotechnical Aspects of Underground Construction in Soft Ground. Balkema, Tokyo, Japan, pp 409–418

    Google Scholar 

  62. Ng C, Lee K, Tang D (2004) Three-dimensional numerical investigations of new Austrian tunnelling method (NATM) twin tunnel interactions. Can Geotech J 41:523–539

    Article  Google Scholar 

  63. Nishikawa K (2003) Development of a prestressed and precast concrete segmental lining. Tunn Undergr Space Technol 18:243–251

    Article  MathSciNet  Google Scholar 

  64. Phienwej N, Hong CP, Sirivachiraporn A (2006) Evaluation of ground movements in EPB-shield tunnelling for Bangkok MRT by 3D-numerical analysis. Tunn Undergr Space Technol 21(3–4):273

    Article  Google Scholar 

  65. Rijke Q (2006) Innovation of stress and damage reduction in bored tunnels during construction based on a shield equilibrium model. Ph.D. dissertation, Utrecht: Delft University of Technology and Holland Railconsult

  66. Schreyer J, Winselmann D (2000) Suitability tests for the lining for the 4th Elbe tunnel tube—results of large-scale tests. Tunnel 1:34–44

    Google Scholar 

  67. Simic D (2006) Building damage potential due to tunnel settlements. In: Hart, Varona (eds) 4th International FLAC symposium on numerical modelling in geomechanics—2006, pp. 63–69

  68. Svoboda T, Mašin D, Bohac J (2010) Class A predictions of a NATM tunnel in stiff clay. Comput Geotech 37(6):817–825

    Article  Google Scholar 

  69. Swoboda G, Kenawi M, Ramadan E (2004) Numerical investigation of TBM tunnelling in consolidated clay. Tunn Undergr Space Technol 19(4):459

    Google Scholar 

  70. Takano Y (2000) Guidelines for the design of shield tunnel lining. Tunn Undergr Space Technol 15(3):303–331

    Article  Google Scholar 

  71. Talmon A, Bezuijen A (2009) Simulating the consolidation of TBM grout at Noordplaspolder. Tunn Undergr Space Technol 24(5):493–499

    Article  Google Scholar 

  72. Teachavorasinskun S, Chub-Uppakarn T (2010) Influence of segmental joints on tunnel lining. Tunn Undergr Space Technol 25:490–494

    Article  Google Scholar 

  73. Thienert C, Pulsfort M (2011) Segment design under consideration of the material used to fill the annular gap. Geomech Tunn 4:665–679

    Article  Google Scholar 

  74. Wittke W, Druffel R, Erichsen C, Gattermann J, Kiehl JDS et al (2007) Stability analysis and design for mechanized tunnelling. (W. WBI Professor Dr.-Ing. Wittke, ed) Grundbau und Felsbau GmbH, Aachen

  75. Zheng-Rong H, Wei Z, Jing-Hua L, Jian L, Rui J (2006) Three dimensional numerical modelling of shield tunnel lining. Tunn Undergr Space Technol 21(3–4):434

    Google Scholar 

  76. Zhou J (1988) The analysis of segmental circular tunnel lining. Undergr Eng Tunn 4:2–6

    Google Scholar 

  77. Do NA, Dias D, Oreste PP, Djeran-Maigre I et al (2013) 3D modelling for mechanized tunnelling in soft ground - Influence of the constitutive model. Am J Appl Sci 10(8):863–875

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. Marguerite Jones from Politecnico of Torino for her contribution to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Dias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, NA., Dias, D., Oreste, P. et al. Three-dimensional numerical simulation for mechanized tunnelling in soft ground: the influence of the joint pattern. Acta Geotech. 9, 673–694 (2014). https://doi.org/10.1007/s11440-013-0279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-013-0279-7

Keywords

Navigation