Skip to main content

Advertisement

Log in

Transport of Snow by the Wind: A Comparison Between Observations in Adélie Land, Antarctica, and Simulations Made with the Regional Climate Model MAR

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

For the first time a simulation of blowing snow events was validated in detail using one-month long observations (January 2010) made in Adélie Land, Antarctica. A regional climate model featuring a coupled atmosphere/blowing snow/snowpack model is forced laterally by meteorological re-analyses. The vertical grid spacing was 2 m from 2 to 20 m above the surface and the horizontal grid spacing was 5 km. The simulation was validated by comparing the occurrence of blowing snow events and other meteorological parameters at two automatic weather stations. The Nash test allowed us to compute efficiencies of the simulation. The regional climate model simulated the observed wind speed with a positive efficiency (0.69). Wind speeds higher than 12 m s −1 were underestimated. Positive efficiency of the simulated wind speed was a prerequisite for validating the blowing snow model. Temperatures were simulated with a slightly negative efficiency (−0.16) due to overestimation of the amplitude of the diurnal cycle during one week, probably because the cloud cover was underestimated at that location during the period concerned. Snowfall events were correctly simulated by our model, as confirmed by field reports. Because observations suggested that our instrument (an acoustic sounder) tends to overestimate the blowing snow flux, data were not sufficiently accurate to allow the complete validation of snow drift values. However, the simulation of blowing snow occurrence was in good agreement with the observations made during the first 20 days of January 2010, despite the fact that the blowing snow flux may be underestimated by the regional climate model during pure blowing snow events. We found that blowing snow occurs in Adélie Land only when the 30-min wind speed value at 2 m a.g.l. is >10 m s −1. The validation for the last 10 days of January 2010 was less satisfactory because of complications introduced by surface melting and refreezing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agosta C, Favier V, Genthon C, Gallée H, Krinner G (2011) A 40-year surface accumulation dataset in Adélie Land coastal area (66°S, 139°E) and its application for atmospheric model validation. Clim Dyn. doi:10.1007/s00382-011-1103-4

  • Andreas EL (1995) Physically based model of the form drag associated with sastrugi. CRREL Report No CR 95-16, pp 12

  • Andreas EL, Jordan RE, Makshtas AP (2005) Parameterizing turbulent exchange over sea ice: the ice station Weddell results. Boundary-Layer Meteorol 114: 439–460

    Article  Google Scholar 

  • Bellot H, Trouvilliez A, Naaim-Bouvet F, Genthon C, Gallée H (2011) Present weather-sensor tests for measuring drifting snow. Ann Glaciol 58: 176–184

    Article  Google Scholar 

  • Bintanja R (1998) The interaction between drifting snow and atmospheric turbulence. Ann Glaciol 26: 167–173

    Google Scholar 

  • Bintanja R (2000) Snowdrift suspension and atmospheric turbulence. Part I: theoretical background and model description. Boundary-Layer Meteorol 95: 343–368

    Article  Google Scholar 

  • Bintanja R (2001) Modification of the wind speed profile caused by snowdrift: results from observations. Q J R Meteorol Soc 127: 2417–2434. doi:10.1002/qj.49712757712

    Article  Google Scholar 

  • Bromwich DH (1988) Snowfall in high southern latitudes. Rev Geophys 26: 149–168

    Article  Google Scholar 

  • Budd WF, Dingle WRJ, Radok U (1965) The Byrd snow drift project: outline and basic results. Am Geophys Union Antarct Res Ser 7: 71–134

    Google Scholar 

  • Cassano JJ, Parish TR (2000) An analysis of the nonhydrostatic dynamics in numerically simulated Antarctic katabatic flows. J Atmos Sci 57: 891–898

    Article  Google Scholar 

  • Chritin V, Bolognesi R, Gubler H (1999) FlowCapt: a new acoustic sensor to measure snowdrift and wind veocity for avalanche forecasting. Cold Reg Sci Technol 30: 125–133

    Article  Google Scholar 

  • Cierco F-X, Naaim-Bouvet F, Bellot H (2007) Acoustic sensors for snowdrift measurements: how should they be used for research purposes. Cold Reg Sci Technol 49: 74–89

    Article  Google Scholar 

  • State of the climate in 2009: (2010) Surface manned and automatic weather station observations. Bull Am Meteorol Soc 91(7): S128–S129

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137: 553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • De Ridder K, Gallée H (1998) Land surface-induced regional climate change in Southern Israel. J Appl Meteorol 37: 1470–1485. doi:10.1175/1520-0450

    Article  Google Scholar 

  • Duynkerke PG, Driedonks AGM (1987) A model for the turbulent structure of the stratocumulus-topped atmospheric boundary layer. J Atmos Sci 44: 43–64

    Article  Google Scholar 

  • Favier V, Agosta C, Genthon C, Arnaud L, Trouvillez A, Gallée H (2011) Modeling the mass and surface heat budgets in a coastal blue ice area of Adelie Land, Antarctica. J Geophys Res 116: F03017. doi:10.1029/2010JF001939

    Article  Google Scholar 

  • Frezzotti M, Gandolfi S, La Marca F, Urbini S (2002) Snow dunes and glazed surfaces in Antarctica: new field and remote-sensing data. An Glaciol 34(1): 81–88

    Article  Google Scholar 

  • Gallée H (1995) Simulation of the mesocyclonic activity in the Ross Sea, Antarctica. Mon Weather Rev 123: 2051–2069

    Article  Google Scholar 

  • Gallée H (1998) A simulation of blowing snow over the Antarctic ice sheet. Ann Glaciol 26: 203–205

    Google Scholar 

  • Gallée H, Gorodetskaya I (2010) Validation of a limited area model over Dome C, Antarctic Plateau, during winter. Clim Dyn 23(1): 61–72. doi:10.1007/s00382-008-0499-y

    Article  Google Scholar 

  • Gallée H, Pettré P (1998) Dynamical constraints on katabatic wind cessation in Adélie Land, Antarctica. J Atmos Sci 55: 1755–1770

    Article  Google Scholar 

  • Gallée H, Schayes G (1994) Development of a three-dimensional meso-gamma primitive equations model, katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Mon Weather Rev 122: 671–685

    Article  Google Scholar 

  • Gallée H, Guyomarc’h G, Brun E (2001) Impact of snow drift on the ntarctic ice sheet surface mass balance. Possible sensitivity to snow surface properties. Boundary-Layer Meterorol 99: 1–19

    Article  Google Scholar 

  • Gallée H, Pettré P, Schayes G (1996) Sudden cessation of katabatic winds in Adélie Land, Antarctica. J Appl Meteorol 35: 1142–1152

    Article  Google Scholar 

  • Gallée H, Peyaud V, Goodwin I (2005) Simulation of the net snow accumulation along the Wilkes land transect, Antarctica, with a regional climate model. Ann Glaciol 41: 17–22

    Article  Google Scholar 

  • Genthon C, Lardeux P, Krinner G (2007) The surface accumulation and ablation of a blue ice area near Cap Prudhomme, Adélie Land, Antarctica. J Glaciol 183(53): 635–645

    Article  Google Scholar 

  • Genthon C, Six D, Favier V, Lazzara M, Keller L (2011) Atmospheric temperature measurement biases on the Antarctic Plateau. J Atmos Ocean Technol (28):1598–1605

  • Gosink JP (1989) The extension of a density current model of katabatic winds to include the effects of blowing snow and sublimation. Boundary-Layer Meterorol 49(4): 367–394. doi:10.1007/BF00123650

    Article  Google Scholar 

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulations. Met. Monograph 10, No. 32. American Meteorological Society, Boston, pp 84

  • Kodama Y, Wendler G, Gosink J (1985) The effect of blowing snow on katabatic winds in Antarctica. Ann Glaciol 6: 59–62

    Google Scholar 

  • Kotlyakov VM (1961) Results of a study of the processes of formation and structure of the upper layer of the ice sheet in Eastern Antarctica. Antarctic glaciology 55. IAHS Press, Wallingford, pp 88–99

    Google Scholar 

  • König-Langlo G, King JC, Pettré P (1998) Climatology of the three coastal Antarctic stations Dumont d’Urville, Neumayer, and Halley. J Geophys Res 103(D9): 10935–10946. doi:10.1029/97JD00527

    Article  Google Scholar 

  • König-Langlo GC, Loose B (2007) The meteorological observatory at Neumayer stations (GvN and NM-II), Antarctica. Polarforschung 76: 25–38

    Google Scholar 

  • Lenaerts JTM, van den Broeke MR, Déry SJ, König-Langlo G, Ettema J, Kuipers Munneke P (2010) Modelling snowdrift sublimation on an Antarctic ice shelf. Cryosphere Discuss 4: 121–152. doi:10.5194/tcd-4-121-2010

    Article  Google Scholar 

  • Lenaerts JTM, van den Broeke MR, van de Berg WJ, van Meijgaard E, Kuipers Munneke P (2012) A new, high resolution surface mass balance map of Antarctica (1979–2010) based on regional climate modeling. Geophys Res Lett 39: L04501. doi:10.1029/2011GL050713

    Article  Google Scholar 

  • Lenaerts JTM, van den Broeke MR, Déry SJ, van Meijgaard E, van de Berg WJ, Palm SP, Sanz Rodrigo J (2012) Modeling drifting snow in Antarctica with a regional climate model, Part I: methods and model evaluation. J Geophys Res 117: D05108. doi:10.1029/2011JD016145

    Article  Google Scholar 

  • Levkov L, Rockel B, Kapitza H, Raschke E (1992) 3D meso-scale numerical studies of cirrus and stratus clouds by their time and space evolution. Contrib Atmos Phys 65: 35–58

    Google Scholar 

  • Lin YJ, Farley RD, Orville HD (1983) Bulk parameterization of the snow-field in a cloud model. J Clim Appl Meteorol 22: 1065–1092

    Article  Google Scholar 

  • Mahesh A, Eager R, Campbell JR, Spinhirne JD (2003) Observations of blowing snow at the South Pole. J Geophys Res 108(D22): 4707. doi:10.1029/2002JD003327

    Article  Google Scholar 

  • Male DH (1980) The seasonal snow cover. In: Colbeck SA (ed) Dynamics of snow and ice masses. Academic Press Inc., New York, pp 305–395

    Chapter  Google Scholar 

  • Mann GW, Anderson PS, Mobbs SD (2000) Profile measurements of blowing snow at Halley, Antarctica. J Geophys Res 105: 24491–24508

    Article  Google Scholar 

  • Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res 100: 16415–16430

    Article  Google Scholar 

  • Mellor M, Fellers G (1986) Concentration and flux of wind-blown snow, US Army Corps of Engineers, Special Report 86-11

  • Meyers MP, DeMott PJ, Cotton WR (1992) New primary ice nucleation parameterizations in an explicit cloud model. J Appl Meteorol 31: 708–721

    Article  Google Scholar 

  • Morcrette J-J (2002) Assessment of the ECMWF model cloudiness and surface radiation fields at the ARM-SGP site. Mon Weather Rev 130: 257–277

    Article  Google Scholar 

  • Naaim-Bouvet F, Bellot H, Naaim M (2010) Back analysis of drifting snow measurements over an instrumented mountainous site. Ann Glaciol 51(54): 207–217

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I. A discussion of principles. J Hydrol 10(3): 282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Parish TR (1988) Surface winds over the Antarctic continent: a review. Rev Geophys 26(1): 169–180. doi:10.1029/RG026i001p00169

    Article  Google Scholar 

  • Scarchilli C, Frezzotti M, Grigioni P, Silvestri L, Agnoletto L, Dolci S (2010) Extraordinary blowing snow transport events in East Antarctica. Clim Dyn 34(7–8): 1195–2306

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996

  • Stearns CR, Wendler G (1988) Research results from Antarctic automatic weather stations. Rev Geophys 26(1): 45–61

    Article  Google Scholar 

  • Takahashi S (1985) Characteristics of drifting snow at Mizuho Station, Antarctica. Ann Glaciol 6: 71–75

    Google Scholar 

  • Walden Von P, Warren SG, Tuttle E (2003) Atmospheric ice crystals over the Antarctic Plateau in Winter. J Appl Meteor 42: 1391–1405

    Article  Google Scholar 

  • Wamser C, Lykossov VN (1995) On the friction velocity during blowing snow. Contrib Atmos Phys 68: 85–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Gallée.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallée, H., Trouvilliez, A., Agosta, C. et al. Transport of Snow by the Wind: A Comparison Between Observations in Adélie Land, Antarctica, and Simulations Made with the Regional Climate Model MAR. Boundary-Layer Meteorol 146, 133–147 (2013). https://doi.org/10.1007/s10546-012-9764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9764-z

Keywords

Navigation