Skip to main content
Log in

Turbulence Characteristics in the Atmospheric Surface Layer for Different Wind Regimes over the Tropical Zongo Glacier (Bolivia, \(16^\circ \)S)

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We investigate properties of the turbulent flow and sensible heat fluxes in the atmospheric surface layer of the high elevation tropical Zongo glacier (\(5,080\) m a.s.l., \(16^\circ \)S, Bolivia) from data collected in the dry season from July to August 2007, with an eddy-covariance system and a 6-m mast for wind speed and temperature profiles. Focus is on the predominant downslope wind regime. A low-level wind-speed maximum, around a height of \(2\) m, is detected in low wind conditions (37 % of the time). In strong wind conditions (39 % of the time), no wind-speed maximum is detected. Statistical and spectral analyses reveal low frequency oscillations of the horizontal wind speed that increase vertical mixing. In strong winds, wavelet analysis shows that coherent structures systematically enhance the turbulent sensible heat fluxes, accounting for 44–52 % of the flux. In contrast, in low wind conditions, the katabatic flow is perturbed by its slow oscillations or meandering motions, inducing erratic turbulent sensible heat fluxes. These motions account for 37–43 % of the flux. On tropical glaciers, the commonly used bulk aerodynamic profile method underestimates the eddy-covariance-based flux, probably because it does not account for low frequency disturbances that influence the surface flow in both wind regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andreas EL (1987) Spectral measurements in a disturbed boundary layer over snow. J Atmos Sci 44(15):1912–1939

    Article  Google Scholar 

  • Barthlott C, Drobinski P, Fesquet C, Dubos T, Pietras C (2007) Long-term study of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 125(1):1–24

    Article  Google Scholar 

  • Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  • Collineau S, Brunet Y (1993) Detection of turbulent coherent motions in a forest canopy, Part 1: wavelet analysis. Bound-Layer Meteorol 65(4):357–379

    Google Scholar 

  • Cullen NJ, Mölg T, Kaser G, Steffen K, Hardy DR (2007) Energy-balance model validation on the top of Kilimanjaro, Tanzania, using eddy covariance data. Ann Glaciol 46(1):227–233

    Article  Google Scholar 

  • Denby B, Greuell W (2000) The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds. J Glaciol 46(154):445–452

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7(3):363–372

    Article  Google Scholar 

  • Favier V, Wagnon P, Ribstein P (2004) Glaciers of the outer and inner tropics: a different behaviour but a common response to climatic forcing. Geophys Res Lett 31:L16403

    Article  Google Scholar 

  • Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194(1):5–22

    Article  Google Scholar 

  • Helgason W, Pomeroy JW (2012) Characteristics of the near-surface boundary layer within a mountain valley during winter. J Appl Meteor Climatol 51:583–597

    Article  Google Scholar 

  • Högström U, Hunt JCR, Smedman AS (2002) Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol 103(1):101–124

    Article  Google Scholar 

  • Højstrup J (1982) Velocity spectra in the unstable planetary boundary layer. J Atmos Sci 39:2239–2248

    Article  Google Scholar 

  • Jomelli V, Khodri M, Favier V, Brunstein D, Ledru MP, Wagnon P, Blard PH, Sicart JE, Braucher R, Grancher D, Bourlès DL, Braconnot P, Vuille M (2011) Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature 474(7350):196–199

    Article  Google Scholar 

  • Kaimal JC, Finnigan J (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York 289 pp

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417):563–589

    Article  Google Scholar 

  • Mahrt L, Paumier J (1984) Heat transport in the atmospheric boundary layer. J Atmos Sci 41(21):3061–3075

    Article  Google Scholar 

  • Mahrt L (2007) Weak-wind mesoscale meandering in the nocturnal boundary layer. Environ Fluid Mech 7(4):331–347

    Article  Google Scholar 

  • McNider R (1982) A note on velocity fluctuations in drainage flows. J Atmos Sci 39(7):1658–1660

    Article  Google Scholar 

  • Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geophiz Inst 24(151):163–187

    Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41(14):2202–2216

    Article  Google Scholar 

  • Munro DS (1989) Surface roughness and bulk heat transfer on a glacier: comparison with Eddy correlation. J Glacio 35(121):343–348

    Google Scholar 

  • Oerlemans J, Grisogono B (2002) Glacier winds and parameterisation of the related surface heat fluxes. Tellus 54A:440452

    Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley, New York, 397 pp

  • Poulos GS, Bossert JE, McKee TB, Pielke R (2007) The interaction of katabatic flow and mountain waves. Part II: case study analysis and conceptual model. J Atmos Sci 64(6):1857–1879

    Article  Google Scholar 

  • Poulos GS, Zhong S (2008) An observational history of small-scale katabatic winds in mid-latitudes. Geogr Compass 2:1–24

    Article  Google Scholar 

  • Prandtl L (1942) Führer durch die Strömungslehre. Vieweg und Sohn, Braunschwieg, 382 pp

  • Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7(1):81–102

    Article  Google Scholar 

  • Rabatel A, Jomelli V, Naveau P, Francou B, Grancher D (2005) Dating of little ice age glacier fluctuations in the tropical andes: charquini glaciers, Bolivia, 16\(^\circ \)S. C R Geosci 337(15):1311–1322

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunei Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78(3–4):351–382

    Article  Google Scholar 

  • Reba ML, Link TE, Marks D, Pomeroy J (2009) An assessment of corrections for eddy covariance measured turbulent fluxes over snow in mountain environments. Water Resour Res 45:W00D38

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, De Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound-Layer Meteorol 26(1):81–93

    Article  Google Scholar 

  • Sicart JE, Patrick W, Ribstein P (2005) Atmospheric controls of the heat balance of Zongo Glacier (16\(^\circ \)S, Bolivia). J Geophys Res 110:D12106

    Article  Google Scholar 

  • Sicart JE, Hock R, Ribstein P, Litt M, Ramirez E (2011) Analysis of seasonal variations in mass balance and meltwater discharge of the tropical Zongo Glacier by application of a distributed energy balance model. J Geophy Res 116:D13105

    Article  Google Scholar 

  • Sicart JE, Litt M, Helgason W, Ben Tahar V, Chaperon T (2014) A study of the atmospheric surface layer and roughness lengths of the high-altitude tropical Zongo Glacier, Bolivia. J Geophys Res 119(7):3793–3808

  • Smeets CJPP, Duynkerke P, Vugts H (1998) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part I: a combination of katabatic and large-scale forcing. Boundary-Layer Meteorol 87(1):117–145

    Article  Google Scholar 

  • Smeets CJPP, Duynkerke P, Vugts H (2000) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part II: pure katabatic forcing conditions. Boundary-Layer Meteorol 97(1):73–107

    Article  Google Scholar 

  • Sorbjan Z (1986) On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol 34(4):377–397

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, 666 pp

  • Thomas C, Foken T (2005) Detection of long-term coherent exchange over spruce forest using wavelet analysis. Theor Appl Climatol 80(2–4):91–104

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Lin PN, Henderson K, Mashiotta TA (2003) Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim Change 59:137–155

    Article  Google Scholar 

  • Van den Broeke M (1997) Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer. J Appl Meteorol 36(6):763–774

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Tech 14(3):512–526

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Tech 20(5):660–672

  • Wagnon P, Ribstein P, Francou B, Pouyaud B (1999) Annual cycle of energy balance of Zongo Glacier, Cordillera Real, Bolivia. J Geophys Res 104:3907–3923

    Article  Google Scholar 

  • Wagnon P, Sicart JE, Berthier E, Chazarin J (2003) Wintertime high-altitude surface energy balance of a Bolivian glacier, Illimani, 6340 m above sea level. J Geophys Res 108(D6):4177

    Article  Google Scholar 

  • Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. In: Blumen W (ed) Atmospheric processes over complex terrain, meteorological monograph, 23(45). American Meteorological Society, Boston

    Google Scholar 

  • Whiteman CD (2000) Mountain meteorology, fundamentals and application. Oxford University Press, New York 355 pp

  • Wilczak J, Oncley S, Stage S (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150

    Article  Google Scholar 

  • Winkler M, Juen I, Mölg T, Wagnon P, Gómez J, Kaser G (2009) Measured and modelled sublimation on the tropical Glaciar Artesonraju. Perú T C 3(1):21–30

    Google Scholar 

Download references

Acknowledgments

The glaciological program is supported by the Institut de Recherche pour le Développement (IRD). The authors are grateful for the assistance provided by IHH (Instituto de Hidraulica e Hídrologia), UMSA (Universidad Mayor de San Andrés) in La Paz, Bolivia. This work was funded by the French SO/SOERE GLACIOCLIM (http://www-lgge.ujf-grenoble.fr/ServiceObs/index.htm), the ANR program TAG 05-JCJC-0135 and the LMI program GREATICE. It has been supported by a grant from Labex OSUG@2020 (Investissements d’avenir ANR10 LABX56). We gratefully thank Sebastien Blein for stimulating discussions and Yves Lejeune, Jean Philippe Chazarin and Benjamin Lehmann for the technical and field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Litt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litt, M., Sicart, JE., Helgason, W.D. et al. Turbulence Characteristics in the Atmospheric Surface Layer for Different Wind Regimes over the Tropical Zongo Glacier (Bolivia, \(16^\circ \)S). Boundary-Layer Meteorol 154, 471–495 (2015). https://doi.org/10.1007/s10546-014-9975-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-014-9975-6

Keywords

Navigation