Skip to main content
Log in

Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In the tropical Andes, the identification of the present synoptic mechanisms associated with the diurnal cycle of precipitation and its interaction with orography is a key step to understand how the atmospheric circulation influences the patterns of precipitation variability on longer time-scales. In particular we aim to better understand the combination of the local and regional mechanisms controlling the diurnal cycle of summertime (DJF) precipitation in the Northern Central Andes (NCA) region of Southern Peru. A climatology of the diurnal cycle is obtained from 15 wet seasons (2000–2014) of 3-hourly TRMM-3B42 data (0.25° × 0.25°) and swath data from the TRMM-2A25 precipitation radar product (5 km × 5 km). The main findings are: (1) in the NCA region, the diurnal cycle shows a maximum precipitation occurring during the day (night) in the western (eastern) side of the Andes highlands, (2) in the valleys of the Cuzco region and in the Amazon slope of the Andes the maximum (minimum) precipitation occurs during the night (day). The WRF (Weather Research and Forecasting) regional atmospheric model is used to simulate the mean diurnal cycle in the NCA region for the same period at 27 km and 9 km horizontal grid spacing and 3-hourly output, and at 3 km only for the month of January 2010 in the Cuzco valleys. Sensitivity experiments were also performed to investigate the effect of the topography on the observed rainfall patterns. The model reproduces the main diurnal precipitation features. The main atmospheric processes identified are: (1) the presence of a regional-scale cyclonic circulation strengthening during the afternoon, (2) diurnal thermally driven circulations at local scale, including upslope (downslope) wind and moisture transport during the day (night), (3) channelization of the upslope moisture transport from the Amazon along the Apurimac valleys toward the western part of the cordillera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Barrett BS, Garreaud R, Falvey M (2009) Effect of the Andes cordillera on precipitation from a midlatitude cold front. Mon Weather Rev 137:3092–3109

    Article  Google Scholar 

  • Barros AP, Kim G, Williams E, Nesbitt SW (2004) Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Nat Hazards Earth Syst Sci 4:29–51

    Article  Google Scholar 

  • Barry RG (2008) Mountain Weather and Climate, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Biasutti M, Yuter SE, Burleyson CD, Sobel AH (2012) Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Clim dyn 39:239–258

    Article  Google Scholar 

  • Campetella C, Vera C (2002) The influence of the Andes mountains on the South American low-level flow. Geophys Res Lett 29:1826

    Article  Google Scholar 

  • Chavez SP, Takahashi K (2017) Orographic rainfall hotspots in the Andes–Amazon transition according to the TRMM precipitation radar and in situ data. Geophys Res Atmos. doi:10.1002/2016JD026282

    Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: model description and implementation. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Condom T, Rau P, Espinoza JC (2011) Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrol Process 25:1924–1933

    Article  Google Scholar 

  • Doyle M, Barros V (2002) Midsummer low-level circulation and precipitation in subtropical south America and related sea surface temperature anomalies in the south Atlantic. J Clim 15:3394–3410

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  • Egger J, Blacutt L, Ghezzi F, Heinrich R, Kolb P, Lämmlein S, Zaratti F (2005) Diurnal circulation of the Bolivian Altiplano. Part I: observations. Mon Weather Rev 133:911–924

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, Oliveira ED, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29:1574–1594

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Lengaigne M, Quispe N, Silva Y, Bettolli ML, Avalos G, Llacza A (2013) Revisiting wintertime cold air intrusions at the east of the Andes: propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns. Clim dyn 41:1983–2002

    Article  Google Scholar 

  • Espinoza JC, Chavez S, Ronchail J, Junquas C, Takahashi K, Lavado W (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity and relations with large-scale atmospheric circulation. Water Resour Res 51:3459–3475

    Article  Google Scholar 

  • Falvey M, Garreaud RD (2005) Moisture variability over the South American Altiplano during the South American low level jet experiment (SALLJEX) observing season. J Geophys Res 110:D22105

  • Favier V, Wagnon P, Chazarin JP, Maisincho L, Coudrain A (2004) One-year measurements of surface heat budget on the ablation zone of Antizana glacier 15, Ecuadorian Andes. J Geophys Res Atmos 109(D18):15

    Article  Google Scholar 

  • Figueroa S, Satyamurty P, Da Silva Dias PL (1995) Simulations of the summer circulation over the South American region with an eta coordinate model. J Atmos Sci 52:1573–1584

    Article  Google Scholar 

  • Garreaud RD (1999) Multiscale analysis of the summertime precipitation over the central Andes. Mon Weather Rev 127:901–921

    Article  Google Scholar 

  • Garreaud R (2000a) Intraseasonal variability of moisture and rainfall over the South American Altiplano. Mon Weather Rev 128:3337–3346

    Article  Google Scholar 

  • Garreaud RD (2000b) Cold air incursions over subtropical and tropical South America: mean structure and dynamics. Mon Weather Rev 128:2544–2549

    Article  Google Scholar 

  • Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14:2779–2789

    Article  Google Scholar 

  • Garreaud RD, Wallace JM (1997) The diurnal march of convective cloudiness over the Americas. Mon Weather Rev 125:3157–3171

    Article  Google Scholar 

  • Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194:5–22

    Article  Google Scholar 

  • Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the reliability ensemble averaging (REA) method. J Clim 15:1141–1158

    Article  Google Scholar 

  • Giovannettone JP, Barros AP (2008) A remote sensing survey of the role of landform on the organization of orographic precipitation in central and southern Mexico. J Hydrometeor 9:1267–1283

    Article  Google Scholar 

  • Giovannettone JP, Barros AP (2009) Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data. J Hydrometeor 10:167–182

    Article  Google Scholar 

  • Grell GA, Devenyi D (2002) A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys Res Lett 29:38.1–38.4

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Houze RA (2012) Orographic effects on precipitating clouds. Rev Geophys 50(1)

  • Houze RA, Rasmussen KL, Zuluaga MD, Brodzik SR (2015) The variable nature of convection in the tropics and subtropics: a legacy of 16 years of the tropical rainfall measuring mission satellite. Rev Geophys 53:994–1021

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor 8:38–55

    Article  Google Scholar 

  • Hurley JV, Vuille M, Hardy DR, Burns SJ, Thompson LG (2015) Cold air incursions, δ18O variability, and monsoon dynamics associated with snow days at Quelccaya ice cap, Peru. J Geophys Res: Atmos 120(15):7467–7487

    Google Scholar 

  • Jiménez PA, Dudhia J (2012) Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J Appl Meteor Climatolog 51:300–316

    Article  Google Scholar 

  • Jiménez PA, González-Rouco JF, Montávez JP, García-Bustamante E, Navarro J, Dudhia J (2013) Analysis of the long-term surface wind variability over complex terrain using a high spatial resolution WRF simulation. Clim Dyn 40:1643–1656

    Article  Google Scholar 

  • Jin X, Wu T, Li L (2013) The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Clim Dyn 41:977–994

    Article  Google Scholar 

  • Junquas C, Li L, Vera CS, Le Treut H, Takahashi K (2015) Influence of South America orography on summertime precipitation in Southeastern South America. Clim Dyn. doi:10.1007/s00382-015-2814-8

    Google Scholar 

  • Kikuchi K, Wang B (2008) Diurnal precipitation regimes in the global tropics. J Clim 21:2680–2696

    Article  Google Scholar 

  • Killeen TJ, Douglas M, Consiglio T, Jørgensen PM, Mejia J (2007) Dry spots and wet spots in the Andean hotspot. J Biogeogr 34:1357–1373

    Article  Google Scholar 

  • Kummerow C, Simpson J, Thiele O, Barnes W, Chang ATC, Stocker E, Ashcroft P (2000) The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J Appl Meteorol 39:1965–1982

    Article  Google Scholar 

  • Labraga J, Frumento O, Lopez M (2000) The atmospheric water vapor cycle in South America and the tropospheric circulation. J Clim 13:1899–1915

    Article  Google Scholar 

  • Lavado CWS, Ronchail J, Labat D, Espinoza JC, Guyot JL (2012) Basin-scale analysis of rainfall and runoff in Peru (1969–2004): Pacific, Titicaca and Amazonas drainages. Hydrol Sci J 57:625–642

    Article  Google Scholar 

  • Lavado Casimiro WS, Silvestre E, Pulache W (2010) Tendencias en los extremos de lluvias cerca a la ciudad del Cusco y su relación con las inundaciones de Enero del 2010. Extreme rainfall trends around Cusco and its relationship with the floods in January. Revista Peruana Geo-Atmosférica 2:89–98

    Google Scholar 

  • Lenters JD, Cook KH (1995) Simulation and diagnosis of the regional summertime precipitation climatology of South America. J Clim 8:2988–3005

    Article  Google Scholar 

  • Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP-NCAR reanalyses: characteristics and temporal variability. J Clim 17:2261–2280

    Article  Google Scholar 

  • Mearns LO, Giorgi F, McDaniel L, Shields C (1995) Analysis of daily variability of precipitation in a nested regional climate model: comparison with observations and doubled CO2 results. Glob Planet Change 10:55–78

    Article  Google Scholar 

  • Mlawer EJ, Taubnam SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:663–682

    Article  Google Scholar 

  • Mölg T, Kaser G (2011) A new approach to resolving climate-cryosphere relations: downscaling climate dynamics to glacier-scale mass and energy balance without statistical scale linking. J Geophys Res 116:D16101

  • Mourre L, Condom T, Junquas C, Lebel T, Sicart JE, Figueroa R, Cochachin A (2016) Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru). Hydrol Earth Syst Sci 20:125–141

    Article  Google Scholar 

  • Negri AJ, Bell TL, Xu L (2002) Sampling of the diurnal cycle of precipitation using TRMM. J Atmos Ocean Technol 19:1333–1344

    Article  Google Scholar 

  • Neukom R, Rohrer M, Calanca P, Salzmann N, Huggel C, Acuña D, Morales MS (2015) Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000–2100. Environ Res Lett 10:084017

    Article  Google Scholar 

  • Ochoa A, Pineda L, Crespo P, Willems P (2014) Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific–Andean region of Ecuador and Peru. Hydrol Earth Syst Sci 18:3179–3193

    Article  Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteor 9:857–861

    Article  Google Scholar 

  • Poveda G, Oscar JM, Salazar LF, Arias PA, Moreno HA, Vieira SC, Agudelo PA, Toro VG, Alvarez JF (2005) The diurnal cycle of precipitation in the tropical Andes of Colombia. Mon Weather Rev 133:228–240

    Article  Google Scholar 

  • Pulgar Vidal J (1946) Historia y Geografía del Perú. Las ocho regiones naturales del Perú. Fondo Editorial de la Universidad Nacional Mayor de San Marcos, Lima, p 256

    Google Scholar 

  • Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102

    Article  Google Scholar 

  • Rasmussen KL, Chaplin MM, Zuluaga MD, Houze RA Jr (2016) Contribution of Extreme convective storms to rainfall in South America. J Hydrometeorol 17(1):353–367

    Article  Google Scholar 

  • Reuder J, Egger J (2006) Diurnal circulation of the South American Altiplano: observations in a valley and at a pass. Tellus A 58:254–262

    Article  Google Scholar 

  • Rodwell M, Hoskins B (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211

    Article  Google Scholar 

  • Roe GH (2005) Orographic precipitation. Annu Rev Earth Planet Sci 33:64571

    Article  Google Scholar 

  • Romatschke U, Houze RA (2010) Extreme summer convection in South America. J Clim 23:3761–3791

    Article  Google Scholar 

  • Salio P, Nicolini M, Saulo A (2002) Chaco low-level jet events characterization during the austral summer season. J Geophys Res 107(D24):4816

    Article  Google Scholar 

  • Scheel MLM, Rohrer M, Huggel Ch, Santos Villar D, Silvestre E, Huffman GJ (2011) Evaluation of TRMM multi-satellite precipitation analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrol Earth Syst Sci 15:2649–2663

    Article  Google Scholar 

  • Schwerdtfeger W (1976) Climates of Central and South America. In: World survey of climatology, vol 12. Elsevier Science, New York

  • Segura H. Espinoza JC, Junquas C, Takahashi K (2016) Evidencing decadal and interdecadal hydroclimatic variability over the Central Andes. Environ Res Lett 11:094016. doi:10.1088/1748-9326/11/9/094016

    Article  Google Scholar 

  • Seluchi ME, Saulo C, Nicolini M, Satyamurty P (2003) The northwestern Argentinean low: a study of two typical events. Mon Weather Rev 131:2361–2378

    Article  Google Scholar 

  • Sicart JE, Ribstein P, Chazarin JP, Berthier E (2002) Solid precipitation on a tropical glacier in Bolivia measured with an ultrasonic depth gauge. Water Resour Res 38(10):1189

    Article  Google Scholar 

  • Sicart JE, Hock R, Ribstein P, Litt M, Ramirez E (2011) Analysis of seasonal variations in mass balance and meltwater discharge of the Tropical Zongo Glacier by application of a distributed energy balance model. J Geophys Res 116:D13105

  • Sicart JE, Espinoza JC, Queno L, Medina M (2015) Radiative properties of clouds over a tropical Bolivian glacier: seasonal variations and relationship with regional atmospheric circulation. Int J Climatol. doi:10.1002/joc.4540

    Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF Version 3. Note NCAR/TN-475+ STR, NCAR Tech, Colorado. doi:10.5065/D68S4MVH

    Google Scholar 

  • Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecast of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon Weather Rev 136:5097–5115

    Article  Google Scholar 

  • Trachte K, Rollenbeck R, Bendix J (2010a) Nocturnal convective cloud formation under clear-sky conditions at the eastern Andes of south Ecuador. J Geophys Res 115:D24203

  • Trachte K, Nauss T, Bendix J (2010b) The impact of different terrain configurations on the formation and dynamics of katabatic flows: idealised case studies. Bound Layer Meteorol 134:307–325

    Article  Google Scholar 

  • Vera CS, Vigliarolo PK (2000) A diagnostic study of cold–air outbreaks over South America. Mon Weather Rev 128:3–24

    Article  Google Scholar 

  • Vera CS et al (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000

    Article  Google Scholar 

  • Vernekar AD, Kirtman BP, Fennessy MJ (2003) Low-level jets and their effects on the South American Summer climate as simulated by the NCEP Eta Model. J Clim 16:297–311

    Article  Google Scholar 

  • Viale M, Norte FA (2009) Strong cross-barrier flow under stable conditions producing intense winter orographic precipitation: a case study over the subtropical central Andes. Weather Forecast 24:1009–1031

    Article  Google Scholar 

  • Virji H (1981) A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds. Mon Weather Rev 109:599–610

    Article  Google Scholar 

  • Vuille M, Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J Clim 17:3334–3348

    Article  Google Scholar 

  • Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96

    Article  Google Scholar 

  • Wallace JM, Hobbs PV (2006) Atmospheric science: an introductory survey, vol 92, 2nd edn. Academic press, 505 pp

  • Weckwerth TM, Bennett LJ, Jay Miller L, Van Baelen J, Di Girolamo P, Blyth AM, Hertneky TJ (2014) An observational and modeling study of the processes leading to deep, moist convection in complex terrain. Mon Weather Rev 142:2687–2708

    Article  Google Scholar 

  • Whiteman CD (2000) Mountain meteorology. Fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  • Yorgun MS, Rood RB (2014) An Object-based approach for quantification of GCM biases of the simulation of orographic precipitation. Part I: idealized simulations. J Clim 27:9139–9154

    Article  Google Scholar 

  • Zängl G, Egger J (2005) Diurnal circulation of the Bolivian Altiplano. Part II: theoretical and model investigations. Mon Weather Rev 133:3624–3643

    Article  Google Scholar 

  • Zardi D, Whiteman CD (2013) Diurnal mountain wind systems. In: Mountain weather research and forecasting. Springer, Netherlands, pp 35–119

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040

    Article  Google Scholar 

  • Zubieta R, Getirana ACV, Espinoza JC, Lavado W (2015) Impacts of satellite-based precipitation datasets on rainfall–runoff modeling of the Western Amazon basin of Peru and Ecuador. J Hydrol 528:599–612. doi:10.1016/j.jhydrol.2015.06.064

    Article  Google Scholar 

  • Zulkafli Z, Buytaert W, Onof C, Manz B, Tarnavsky E, Lavado W, Guyot JL (2014) A comparative performance analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for hydrological applications over Andean–Amazon river basins. J Hydrometeor 15:581–592

    Article  Google Scholar 

  • Zuluaga MD, Houze RA Jr (2015) Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon Weather Rev 143:298–316

    Article  Google Scholar 

Download references

Acknowledgements

Comments and suggestions provided by five anonymous reviewers were very helpful in improving this paper. The first author C.J. was supported by a post-doc grant from the Institute of Research for the Development (IRD). This study was conducted within the IRD program LMI-GREATICE. This work used HPC-Linux-Cluster resources from Laboratorio de Dinámica de Fluidos Geofísicos Computacional at IGP (Grants 101-2014-FONDECYT, SPIRALES2012 IRD-IGP, Manglares IGP-IDRC, PP068 program). The authors also thank Ricardo Zubieta (IGP, Peru) for helping with Fig. 1d and Antoine Rabatel (IGE, France) for interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Junquas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junquas, C., Takahashi, K., Condom, T. et al. Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Clim Dyn 50, 3995–4017 (2018). https://doi.org/10.1007/s00382-017-3858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3858-8

Keywords

Navigation