Skip to main content

Advertisement

Log in

What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile?

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of the Peru–Chile upwelling system (PCUS) are primarily driven by alongshore wind stress and curl, like in other eastern boundary upwelling systems. Previous studies have suggested that upwelling-favorable winds would increase under climate change, due to an enhancement of the thermally-driven cross-shore pressure gradient. Using an atmospheric model on a stretched grid with increased horizontal resolution in the PCUS, a dynamical downscaling of climate scenarios from a global coupled general circulation model (CGCM) is performed to investigate the processes leading to sea-surface wind changes. Downscaled winds associated with present climate show reasonably good agreement with climatological observations. Downscaled winds under climate change show a strengthening off central Chile south of 35°S (at 30°S–35°S) in austral summer (winter) and a weakening elsewhere. An alongshore momentum balance shows that the wind slowdown (strengthening) off Peru and northern Chile (off central Chile) is associated with a decrease (an increase) in the alongshore pressure gradient. Whereas the strengthening off Chile is likely due to the poleward displacement and intensification of the South Pacific Anticyclone, the slowdown off Peru may be associated with increased precipitation over the tropics and associated convective anomalies, as suggested by a vorticity budget analysis. On the other hand, an increase in the land–sea temperature difference is not found to drive similar changes in the cross-shore pressure gradient. Results from another atmospheric model with distinct CGCM forcing and climate scenarios suggest that projected wind changes off Peru are sensitive to concurrent changes in sea surface temperature and rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Albert A, Echevin V, Lévy M, Aumont O (2010) Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system. J Geophys Res 115:C12033. doi:10.1029/2010JC006569

    Article  Google Scholar 

  • Arakelian A, Codron F (2012) Southern hemisphere jet variability in the IPSL GCM at varying resolutions. J Atmos Sci 56:4032–4048

    Google Scholar 

  • Bakun A (1990) Global climate change and intensification of coastal upwelling. Science 247:198–201. doi:10.1126/science.247.4939.198

    Article  Google Scholar 

  • Bakun A, Weeks SJ (2008) The marine ecosystem off Peru: what are the secrets of its fishery productivity and what might its future hold? Prog Oceanogr 79:290–299. doi:10.1016/j.pocean.2008.10.027

    Article  Google Scholar 

  • Bakun A, Field D, Renondo-Rodriguez A, Weeks SJ (2010) Greenhouse gas, upwelling favourable winds, and the future of upwelling systems. Glob Chang Biol 16:1213–1228. doi:10.1111/j.1365-2486.2009.02094.x

    Article  Google Scholar 

  • Barton ED, Field DB, Roy C (2013) Canary current upwelling: more or less? Prog Oceanogr. doi:10.1016/j.pocean.2013.07.007

    Google Scholar 

  • Belmadani A, Dewitte B, An S-I (2010) ENSO feedbacks and associated time scales of variability in a multimodel ensemble. J Clim 23:3181–3204. doi:10.1175/2010JCLI2830.1

    Article  Google Scholar 

  • Boé J, Hall A, Colas F, McWilliams JC, Qu X, Kurian J, Kapnick SB (2011) What shapes mesoscale wind anomalies in coastal upwelling zones? Clim Dyn 36(11–12):2037–2049. doi:10.1007/s00382-011-1058-5

    Article  Google Scholar 

  • Boville BA, Gent PR (1998) The NCAR climate system model, version one. J Clim 11:1115–1130. doi:10.1175/1520-0442(1998)011<1115:TNCSMV>2.0.CO:2

    Article  Google Scholar 

  • Capet XJ, Marchesiello P, McWilliams JC (2004) Upwelling response to coastal wind profiles. Geophys Res Lett 31:L13311. doi:10.1029/2004GL020123

    Article  Google Scholar 

  • Cardone VJ, Greenwood JG, Cane MA (1990) On trends in historical marine wind data. J Clim 3:113–127. doi:10.1175/1520-0442(1990)0030113:OTIHMW2.0.CO;2

    Google Scholar 

  • Chavez FP (1995) A comparison of ship and satellite chlorophyll from California and Peru. J Geophys Res 100:24855–24862. doi:10.1029/95JC02738

    Article  Google Scholar 

  • Chavez FP, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J (2008) The northern Humboldt Current System: brief history, present status and a view towards the future. Prog Oceanogr 79:95–105. doi:10.1016/j.pocean.2008.10.012

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM (2007) Summertime coupling between sea surface temperature and wind stress in the California Current System. J Phys Oceanogr 37:495–517

    Article  Google Scholar 

  • Chen W, Jiang Z, Li L, Yiou P (2011) Simulation of regional climate change under the IPCC A2 scenario in southeast China. Clim Dyn 36:491–507

    Article  Google Scholar 

  • Christensen JH et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc A 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Demarcq H (2009) Trends in primary production, sea surface temperature and wind in upwelling systems (1998–2007). Prog Oceanogr 83:376–385. doi:10.1016/j.pocean.2009.07.022

    Article  Google Scholar 

  • Echevin V, Goubanova K, Belmadani A, Dewitte B (2012) Sensitivity of the Humboldt Current system to global warming: a downscaling experiment of the IPSL-CM4 model. Clim Dyn 38(3–4):761–774. doi:10.1007/s00382-011-1085-2

    Article  Google Scholar 

  • Enfield DB (1981) Thermally-driven wind variability in the planetary boundary layer above Lima, Peru. J Geophys Res 86(C3):2005–2016. doi:10.1029/JC086iC03p02005

    Article  Google Scholar 

  • Falvey M, Garreaud R (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:D04102. doi:10.1029/2008JD010519

    Google Scholar 

  • Food and Agriculture Organization (2010) The state of world fisheries and aquaculture 2010. Fish. and Aquacult. Dep., Rome, 218 p

  • Franchito SH, Rao VB, Stech JL, Lorenzzetti JA (1998) The effect of coastal upwelling on the sea-breeze circulation at Cabo Frio, Brazil: a numerical experiment. Ann Geophys 16(7):866–881

    Article  Google Scholar 

  • Fréon P, Barange M, Aristegui J (2009) Eastern boundary upwelling ecosystems: integrative and comparative approaches. Prog Oceanogr 83:1–14

    Article  Google Scholar 

  • Garreaud R, Falvey M (2009) The coastal winds off western subtropical South America in future climate scenarios. Int J Climatol 29(4):543–554. doi:10.1002/joc.1716

    Article  Google Scholar 

  • Garreaud RD, Muñoz RC (2005) The low-level jet off the west coast of subtropical South America: structure and variability. Mon Weather Rev 133:2246–2261. doi:10.1175/MWR2972.1

    Article  Google Scholar 

  • Garreaud RD, Rutllant J, Quintana J, Carrasco J, Minnis P (2001) CIMAR-5: a snapshot of the lower troposphere over the subtropical southeast Pacific. Bull Am Meteorol Soc 82(10):2193–2207

    Article  Google Scholar 

  • Garreaud RD, Rutllant JA, Muñoz RC, Rahn DA, Ramos M, Figueroa D (2011) VOCALS-CUpEx: the Chilean upwelling experiment. Atmos Chem Phys 11:2015–2029. doi:10.5194/acp-11-2015-2011

    Article  Google Scholar 

  • Gastineau G, Le Treut H, Li L (2008) Hadley circulation changes under global warming conditions indicated by coupled climate models. Tellus 60A:863–884. doi:10.1111/j.1600-0870.2008.00344.x

    Article  Google Scholar 

  • Gastineau G, Li L, Le Treut H (2009) The Hadley and Walker circulation changes in global warming conditions described by idealized atmospheric simulations. J Clim 22:3993–4013. doi:10.1175/2009JCLI2794.1

    Article  Google Scholar 

  • Gordon C et al (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168. doi:10.1007/s00382-005-0010

    Article  Google Scholar 

  • Goubanova K, Ruiz C (2010) Impact of climate change on wind-driven upwelling off the coasts of Peru–Chile in a multi-model ensemble. In: duPenhoat Y, Kislov AV (eds) Climate variability in the tropical Pacific: mechanisms, modelling and observations. Maks-Press, Moscow, pp 194–201

    Google Scholar 

  • Goubanova K, Echevin V, Dewitte B, Codron F, Takahashi K, Terray P, Vrac M (2011) Statistical downscaling of sea-surface wind over the Peru–Chile upwelling region: diagnosing the impact of climate change from the IPSL-CM4 model. Clim Dyn 36(7–8):1365–1378. doi:10.1007/s00382-010-0824-0

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5), Tech. note TN-398+IA. National Center for Atmospheric Research, Boulder, CO, 125 p

  • Gutiérrez D, Bouloubassi I, Sifeddine A, Purca S, Goubanova K, Graco M, Field D, Mejanelle L, Velazco F, Lorre A, Salvatteci R, Quispe D, Vargas G, Dewitte B, Ortlieb L (2011) Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys Res Lett 38:L07603. doi:10.1029/2010GL046324

    Article  Google Scholar 

  • Halpern D (2002) Offshore Ekman transport and Ekman pumping off Peru during the 1997–1998 El Niño. Geophys Res Lett 29:1075. doi:10.1029/2001GL014097

    Article  Google Scholar 

  • Haraguchi PY (1968) Inversions over the tropical eastern Pacific ocean. Mon Weather Rev 96:177–185

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699. doi:10.1175/JCLI3990.1

    Article  Google Scholar 

  • Hourdin F et al (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813. doi:10.1007/s00382-006-0158-0

    Article  Google Scholar 

  • Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21:5145–5153. doi:10.1175/2008JCLI2292.1

    Article  Google Scholar 

  • Huyer A, Smith RL, Paluszkiewicz T (1987) Coastal upwelling off Peru during normal and El Niño times, 1981–1984. J Geophys Res 92(C13):14297–14307. doi:10.1029/JC092iC13p14297

    Article  Google Scholar 

  • Jin X, Dong C, Kurian J, McWilliams JC, Chelton DB, Li Z (2009) SST-wind interaction in coastal upwelling: oceanic simulation with empirical coupling. J Phys Oceanogr 39(11):2957–2970

    Article  Google Scholar 

  • Johanson CM, Fu Q (2009) Hadley cell widening: model simulations versus observations. J Clim 22:2713–2725. doi:10.1175/2008JCLI2620.1

    Article  Google Scholar 

  • Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met. Office Hadley Centre, Exeter, 40 p

  • Junquas C, Vera C, Li L, Le Treut H (2012) Summer precipitation variability over southeastern South America in a global warming scenario. Clim Dyn 38:1867–1883

    Article  Google Scholar 

  • Junquas C, Vera CS, Li L, Le Treut H (2013) Impact of projected SST changes on summer rainfall in southeastern South America. Clim Dyn 40(7–8):1569–1589. doi:10.1007/s00382-013-1695-y

    Article  Google Scholar 

  • Kodama Y-M (1999) Roles of the atmospheric heat sources in maintaining the subtropical convergence zones: an aqua-planet GCM study. J Atmos Sci 56:4032–4048

    Article  Google Scholar 

  • Large WG, Danabasoglu G (2006) Attribution and impacts of upper ocean biases in CCSM3. J Clim 19:2325–2346. doi:10.1175/JCLI3740.1

    Article  Google Scholar 

  • Lorenz P, Jacob D (2005) Influence of regional scale information on the global circulation: a two-way nesting climate simulation. Geophys Res Lett 32:L18706. doi:10.1029/2005GL023351

    Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. doi:10.1029/2006GL028443

    Google Scholar 

  • Marti O et al (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34(1):1–26. doi:10.1007/s00382-009-0640-6

    Article  Google Scholar 

  • Miranda PMA, Alves JMR, Serra N (2012) Climate change and upwelling: response of Iberian upwelling to atmospheric forcing in a regional climate scenario. Clim Dyn. doi:10.1007/s00382-012-1442-9

    Google Scholar 

  • Mitas CM, Clement A (2005) Has the Hadley cell been strengthening in recent decades? Geophys Res Lett 32:L03809. doi:10.1029/2004GL021765

    Article  Google Scholar 

  • Muñoz RC, Garreaud RD (2005) Dynamics of the low-level jet off the west coast of subtropical South America. Mon Weather Rev 133:3661–3677. doi:10.1175/MWR3074.1

    Article  Google Scholar 

  • Nakicenovic N et al (2000) Special report on emissions scenarios: a special report of working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 599 p

  • Nigam S (1997) The annual warm to cold phase transition in the eastern equatorial Pacific: diagnosis of the role of stratus cloud-top cooling. J Clim 10:2447–2467

    Article  Google Scholar 

  • Oerder V, Colas F, Echevin V, Codron F, Tam J, Belmadani (2013) A Peru–Chile upwelling dynamics under climate change. Clim Dyn (submitted)

  • Perlin N, Skyllingstad ED, Samelson RM (2011) Coastal atmospheric circulation around an idealized cape during wind-driven upwelling studied from a coupled ocean–atmosphere model. Mon Weather Rev 139:809–829

    Article  Google Scholar 

  • Philander SGH, Gu D, Lambert G, Lau NC, Pacanowski RC (1996) Why the ITCZ is mostly north of the equator. J Clim 9:2958–2972

    Article  Google Scholar 

  • Pope V, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley centre climate model: HadAM3. Clim Dyn 16:123–146. doi:10.1007/s00382-005-0009

    Article  Google Scholar 

  • Previdi M, Liepert BG (2007) Annular modes and Hadley cell expansion under global warming. Geophys Res Lett 34:L22701. doi:10.1029/2007GL031243

    Article  Google Scholar 

  • Quijano-Vargas JJ (2011) Simulacion de la dinamica del viento superficial sobre la costa de Ica utilizando el modelo numerico de la atmosfera de mesoescala MM5, Thesis in Engineering in Fluid Mechanics, Universidad Nacional Mayor de San Marcos, 172 p. http://www.met.igp.gob.pe/publicaciones/2011/JQuijano_tesisUNMSM.pdf

  • Rahn DA, Garreaud R (2010) Marine boundary layer over the subtropical southeast Pacific during VOCALS-Rex—part 1: mean structure and diurnal cycle. Atmos Chem Phys 10:4491–4506. doi:10.5194/acp-10-4491-2010

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Renault L, Dewitte B, Falvey M, Garreaud R, Echevin V, Bonjean F (2009) Impact of atmospheric coastal jet off central Chile on sea surface temperature from satellite observations (2000–2007). J Geophys Res 114:C08006. doi:10.1029/2008JC005083

    Google Scholar 

  • Renault L, Dewitte B, Marchesiello P, Illig S, Echevin V, Cambon G, Ramos M, Astudillo O, Minnis P, Ayers JK (2012) Upwelling response to atmospheric coastal jets off central Chile: a modeling study of the October 2000 event. J Geophys Res 117:C02030. doi:10.1029/2011JC007446

    Google Scholar 

  • Risien CM, Chelton DB (2008) A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J Phys Oceanogr 38:2379–2413. doi:10.1175/2008JPO3881.1

    Article  Google Scholar 

  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791. doi:10.1175/JCLI3824.1

    Article  Google Scholar 

  • Sepulchre P, Sloan LC, Snyder M, Fiechter J (2009) Impacts of Andean uplift on the Humboldt Current system: a climate model sensitivity study. Paleoceanography 24:PA4215. doi:10.1029/2008PA001668

    Article  Google Scholar 

  • Small J, DeSzoeke SP, Xie S-P, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Ocean 45:274–319

    Article  Google Scholar 

  • Snyder MA, Bell JL, Sloan LC, Duffy PB, Govindasamy B (2002) Climate responses to a doubling of atmospheric carbon dioxide for a climatically vulnerable region. Geophys Res Lett 29:1514. doi:10.1029/2001GL014431

    Article  Google Scholar 

  • Snyder MA, Sloan LC, Diffenbaugh NS, Bell JL (2003) Future climate change and upwelling in the California Current. Geophys Res Lett 30:1823. doi:10.1029/2003GL017647

    Article  Google Scholar 

  • Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Doney SC, Gehlen M, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005

    Article  Google Scholar 

  • Strub PT, Mesias JM, Montecino V, Rutllant J, Salinas S (1998) Coastal ocean circulation off western South America. In: Robinson AR, Brink KH (eds) The sea, vol 11. Wiley, New York, NY, pp 273–314

    Google Scholar 

  • Sutton RT, Dong B, Gregory JM (2007) Land/sea warming ratio in response to climate change: IPCC-AR4 model results and comparison with observations. Geophys Res Lett 34:L02701. doi:10.1029/2006GL028164

    Article  Google Scholar 

  • Takahashi K, Battisti DS (2007a) Processes controlling the mean tropical Pacific precipitation pattern. Part I: the Andes and the eastern Pacific ITCZ. J Clim 20:3434–3451

    Article  Google Scholar 

  • Takahashi K, Battisti DS (2007b) Processes controlling the mean tropical Pacific precipitation pattern. Part II: the SPCZ and the southeast Pacific dry zone. J Clim 20:5696–5706

    Article  Google Scholar 

  • Takahashi K, Martínez AG, Mosquera-Vásquez K (2013) The very strong 1925–1926 El Niño in the far eastern Pacific, revisited. Clim Dyn (submitted)

  • Tokinaga H, Xie S-P (2011) Wave and anemometer-based sea-surface wind (WASWind) for climate change analysis. J Clim 24:267–285

    Article  Google Scholar 

  • Tokinaga H, Xie S-P, Timmermann A, McGregor S, Ogata T, Kubota H, Okumura YM (2012a) Regional patterns of tropical Indo-Pacific climate change: evidence of the Walker circulation weakening. J Clim 25:1689–1710. doi:10.1175/JCLI-D-11-00263.1

    Article  Google Scholar 

  • Tokinaga H, Xie S-P, Deser C, Kosaka Y, Okumura YM (2012b) Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491:439–443. doi:10.1038/nature11576

    Article  Google Scholar 

  • Vargas G, Pantoja S, Rutllant J, Lange C, Ortlieb L (2007) Enhancement of coastal upwelling and interdecadal ENSO-like variability in the Peru–Chile Current since late 19th century. Geophys Res Lett 34:L13607. doi:10.1029/2006GL028812

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical Pacific circulation. J Clim 20:4316–4340. doi:10.1175/JCLI4258.1

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 327:216–219. doi:10.1038/nature04744

    Google Scholar 

  • Winant CD, Dorman C, Friehe C, Beardsley R (1988) The marine layer off northern California: an example of supercritical channel flow. J Atmos Sci 45:3588–3605

    Article  Google Scholar 

  • Wyant MC et al (2010) The PreVOCA experiment: modeling the lower troposphere in the Southeast Pacific. Atmos Chem Phys 10:4757–4774. doi:10.5194/acp-10-4757-2010

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  • Xie S-P, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350

    Article  Google Scholar 

  • Xu H, Wang Y, Xie S-P (2004) Effects of the Andes on eastern Pacific climate: a regional atmospheric model study. J Clim 17:589–602

    Article  Google Scholar 

  • Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18(12):1853–1860

    Article  Google Scholar 

Download references

Acknowledgments

The LMDz-ESP05 simulations were performed on Brodie, the NEC SX8 computer at Institut du Développement et des Ressources en Informatique Scientifique (IDRIS), Orsay, France. The LMDz-SA1 simulations were performed on Calcul Intensif pour le Climat, l’Atmosphère et la Dynamique (CICLAD), a PC cluster at IPSL, within the framework of previous research supported by the European Commission’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement N°212492 (CLARIS LPB. A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin), CNRS/LEFE Program, and CONICET PIP 112-200801-00399. A. Belmadani was supported by the Agence Nationale de la Recherche (ANR) Peru Ecosystem Projection Scenarios (PEPS, ANR-08-RISK-012) project. Additional support was provided by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), by the National Aeronautics and Space Administration (NASA) through Grant NNX07AG53G, and by the National Oceanic and Atmospheric Administration (NOAA) through Grant NA11NMF4320128, which sponsor research at the IPRC. A. Belmadani is now supported by the Universidad de Concepcion (UdeC). V. Echevin and C. Junquas are supported by the Institut de Recherche pour le Développement (IRD). F. Codron is supported by the Université Pierre et Marie Curie (UPMC). K. Takahashi is supported by the Instituto Geofisico del Peru (IGP) and had partial support from the Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS) and the Université Paul Sabatier. This work is a contribution of the IRD DISCOH International Mixed Laboratory. K. Hamilton, A. Lauer, and Y. Wang are thanked for fruitful discussions. This is the IPRC/SOEST publication #1028/9047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Belmadani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belmadani, A., Echevin, V., Codron, F. et al. What dynamics drive future wind scenarios for coastal upwelling off Peru and Chile?. Clim Dyn 43, 1893–1914 (2014). https://doi.org/10.1007/s00382-013-2015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-2015-2

Keywords

Navigation