Skip to main content
Log in

Characterization of Atmospheric Ekman Spirals at Dome C, Antarctica

  • Notes and Comments
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We use wind speed and temperature measurements taken along a 45-m meteorological tower located at Dome C, Antarctica (\(75.06^{\circ }\hbox {S}\), \(123.19^{\circ }\hbox {E}\)) to highlight and characterize the Ekman spiral. Firstly, temperature records reveal that the atmospheric boundary layer at Dome C is stable during winter and summer nights (i.e., \(>\)85 % of the time). The wind vector, in both speed and direction, also shows a strong dependence with elevation. An Ekman model was then fitted to the measurements. Results show that the wind vector follows the Ekman spiral structure for more than 20 % of the year (2009). Most Ekman spirals have been detected during summer nights, that is, when the boundary layer is slightly stratified. During these episodes, the boundary-layer height ranged from 25 to 100 m, the eddy viscosity from 0.004 to \(0.06~\hbox {m}^2~\hbox {s}^{-1}\), and the Richardson number from zero to 1.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Argentini S, Viola A, Sempreviva AM, Petenko I (2005) Summer boundary-layer height at the plateau site of Dome C, Antarctica. Boundary-Layer Meteorol 115:409–422. doi:10.1007/s10546-004-5643-6

    Article  Google Scholar 

  • Aristidi E, Agabi K, Azouit M, Fossat E, Vernin J, Travouillon T, Lawrence JS, Meyer C, Storey JWV, Halter B, Roth WL, Walden V (2005) An analysis of temperatures and wind speeds above Dome C, Antarctica. Astron Astrophys 430:739–746. doi:10.1051/0004-6361:20041876

    Article  Google Scholar 

  • Barral H, Vignon E, Bazile E, Traullé O, Gallée H, Genthon C, Brun C, Couvreux F, Le Moigne P (2014) Summer diurnal cycle at Dome C on the Antartic Plateau. In: 21st symposium on boundary layer and turbulence

  • Casasanta G, Pietroni I, Petenko I, Argentini S (2014) Observed and modelled convective mixing-layer height at Dome C, Antarctica. Bounday-Layer Meteorol 151:587–608. doi:10.1007/s10546-014-9907-5

    Google Scholar 

  • Connolley WM (1996) The Antarctic temperature inversion. Int J Climatol 16:1333–1342

    Article  Google Scholar 

  • Ekman VW (1905) On the influence of the Earth’s rotation on ocean currents. Ark Mat Astron Fys 2:1–53

    Google Scholar 

  • Gallée H, Barral H, Vignon E, Genthon C (2015) A case study of a low level jet during OPALE. Atmos Chem Phys Discuss 14:31,091–31,109. doi:10.5194/acp-15-1-2015

    Article  Google Scholar 

  • Gallée H, Preunkert S, Argentini S, Frey MM, Genthon C, Jourdain B, Pietroni I, Casasanta G, Barral H, Vignon E, Legrand M, Amory C (2015) Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign. Atmos Chem Phys 15:6225–6236. doi:10.5194/acp-15-6225-2015

    Article  Google Scholar 

  • Genthon C, Town MS, Six D, Favier V, Argentini S, Pellegrini A (2010) Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. J Geophys Res Atmos 115:D05104. doi:10.1029/2009JD012741

    Article  Google Scholar 

  • Genthon C, Gallée H, Six D, Grigioni P, Pellegrini A (2013) Two years of atmospheric boundary layer observation on a 45-m tower at Dome C on the Antarctic plateau. J Geophys Res Atmos 118:3218–3232. doi:10.1002/jgrd.50128

    Article  Google Scholar 

  • Georgiadis T, Argentini S, Mastrantonio G, Sozzi AVR, Nardino M (2002) Boundary layer convective-like activity at Dome Concordia, Antarctica. Nuovo Cim C Geophys Sp Phys C 25:425

    Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the Sheba data. Boundary-Layer Meteorol 116:201–235. doi:10.1007/s10546-004-2729-0

    Article  Google Scholar 

  • Hagelin S, Masciadri E, Lascaux F, Stoesz J (2008) Comparison of the atmosphere above the South Pole, Dome C and Dome A: first attempt. Mon Not R Astron Soc 1510:1499–1510. doi:10.1111/j.1365-2966.2008.13361.x

    Article  Google Scholar 

  • Holton J (1992) An introduction to dynamic meteorology. Academic Press, San Diego, 511 pp

  • Holtslag AAM, Svensson G, Baas P, Basu S, Beare B, Beljaars ACM, Bosveld FC, Cuxart J, Lindvall J, Steeneveld GJ, Tjernström M, Van de Wiel BJH (2013) Stable boundary layers and diurnal cycles. Bull Am Meteorol Soc 94:1691–1706

    Article  Google Scholar 

  • Hudson SR, Brandt RE (2005) A look at the surface-based temperature inversion on the Antarctic Plateau. J Clim 18:1673–1696. doi:10.1175/JCLI3360.1

    Article  Google Scholar 

  • King JC, Turner J (1997) Antarctic meteorology and climatology. Cambridge University Press, Cambridge 409 pp

    Book  Google Scholar 

  • King JC, Argentini SA, Anderson PS (2006) Contrasts between the summertime surface energy balance and boundary layer structure at Dome C and Halley stations, Antarctica. J Geophys Res Atmos 111:D02105. doi:10.1029/2005JD006130

    Article  Google Scholar 

  • Kottmeier C (1986) Shallow gravity flows over the Ekstrm ice shelf. Boundary-Layer Meteorol 35(1–2):1–20

    Article  Google Scholar 

  • Kuhn M, Lettau H, Riordan AJ (1977) Stability wind spiraling in the lowest 32 m. In: Meteorological studies at Plateau Station, Antarctica. Paper 7, Antarctic Research Series, vol 25, pp 93–l I I

  • Lettau H (1950) A reexamination of the “Leipzig wind profile” considering some relations between wind and turbulence in the frictional layer. Tellus 2(2):125–129

    Article  Google Scholar 

  • Lettau H, Riordan A, Kuhn M (1977) Air temperature and two-dimensional wind profiles in the lowest 32 m as a function of bulk stability. In: Businger JA (ed) Meteorological studies at Plateau station, Antarctica. Antarctic Research Series, vol 25, American Geophysical Union, Washington, pp 77–91

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Quart Appl Math 2:164–168

    Google Scholar 

  • Mahrt L, Schwerdtfeger W (1970) Ekman spirals for exponential thermal wind. Boundary-Layer Meteorol 1(2):137–145

    Article  Google Scholar 

  • Mastrantonio G, Malvestuto V, Argentini S, Georgiadis T, Viola A (1999) Evidence of a convective boundary layer developing on the Antarctic plateau during the summer. Meteorol Atmos Phys 71:127–132. doi:10.1007/s007030050050

    Article  Google Scholar 

  • Mildner P (1932) Über die Reibung in einer speziellen Luftmasse in den untersten Schichten der Atmosphäre. Beitr Phys freien Atmosphäre 19:151–158

    Google Scholar 

  • Pietroni I, Argentini S, Petenko I, Sozzi R (2012) Measurements and parametrizations of the atmospheric boundary-layer height at Dome C, Antarctica. Boundary-Layer Meteorol 143:189–206. doi:10.1007/s10546-011-9675-4

    Article  Google Scholar 

  • Rysman JF, Verrier S, Lahellec A, Genthon C (2015) Analysis of boundary-layer statistical properties at Dome C, Antarctica. Boundary-Layer Meteorol 156:1–11

    Article  Google Scholar 

  • Sandu I, Beljaars A, Balsamo G (2014) Improving the representation of stable boundary layers. ECMWF Newsl 138:24–31

    Google Scholar 

  • Van Ulden A, Wieringa J (1996) Atmospheric boundary layer research at Cabauw. Boundary-Layer Meteorol 78:34–69

    Google Scholar 

  • Zilitinkevich SS (2002) Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. Q J R Meteorol Soc 128(581):913–925

    Article  Google Scholar 

  • Zilitinkevich S, Esau I, Baklanov A (2007) Further comments on the equilibrium height of neutral and stable planetary boundary layers. Q J R Meteorol Soc 133:265–271

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Jean-Yves Grandpeix for his valuable help for the statistical analysis and Chantal Claud for her support that allows to achieve this paper. Boundary layer observation and research at Dome C were supported by the French Polar Institute (IPEV; CALVA program), the Institut National des Sciences de l’Univers (Concordia and LEFE-CLAPA programs), the Observatoire des Sciences de l’Univers de Grenoble (OSUG) and the École Doctorale 129 - Sciences de l’environnement. We would like to thank the two anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Rysman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rysman, JF., Lahellec, A., Vignon, E. et al. Characterization of Atmospheric Ekman Spirals at Dome C, Antarctica. Boundary-Layer Meteorol 160, 363–373 (2016). https://doi.org/10.1007/s10546-016-0144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0144-y

Keywords

Navigation