Skip to main content
Log in

Climatic interpretation of the recently extended Vostok ice records

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A new ice core drilled at the Russian station of Vostok in Antarctica reached 2755 m depth in September 1993. At this depth, the glaciological time scale provides an age of 260 ky BP (±25). We refine this estimate using records of dust and deuterium in the ice and of δ18O of O2 in the entrapped air. δ18O of O2 is highly correlated with insolation over the last two climatic cycles if one assumes that the EGT chronology overestimates the increase of age with depth by 12% for ages older than 112 ky BP. This modified age-depth scale gives an age of 244 ky BP at 2755 m depth and agrees well with the age-depth scale of Walbroeck et al. (in press) derived by orbital tuning of the Vostok δD record. We discuss the temperature interpretation of this latter record accounting for the influence of the origin of the ice and using information derived from deuterium-excess data. We conclude that the warmest period of stage 7 was likely as warm as today in Antarctica. A remarkable feature of the Vostok record is the high level of similarity of proxy temperature records for the last two climatic cycles (stages 6 and 7 versus stages 1–5). This similarity has no equivalent in other paleorecords.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnola JM, Pimienta P, Raynaud D, Korotkevich YS (1991) CO2 climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus 43B:83–91

    Google Scholar 

  • Bender M, Sowers T, Labeyrie LD (1994a) The Dole effect and its variation during the last 130000 years, as measured in the Vostok core. Glob Biog Cycles 8:363–376

    Google Scholar 

  • Bender M, Sewers T, Dickson ML, Orchado J, Grootes P, Mayewski PA, Meese DA (1994b) Climate connection between Greenland and Antarctica during the last 100000 years. Nature 372:663–666

    Google Scholar 

  • Berger AL (1978) Long-term variations of daily insolation and Quaternary climatic change. J Atmos Sci 35:2362–2367

    Article  Google Scholar 

  • Bond G, Lotti R (1995) Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science 267:143–147

    Google Scholar 

  • Bond G, Broecker WS, Johnsen SJ, Mc Manus J, Labeyrie LD, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147

    Google Scholar 

  • Chappellaz J, Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1990) Ice core record of atmospheric methane over the past 160 000 years. Nature 345:127–131

    Google Scholar 

  • Charles C, Fairbanks R (1992) Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate. Nature 355:416–419

    Google Scholar 

  • Charles C, Rind D, Jouzel J, Koster R, Fairbanks R (1994) Glacial interglacial changes in moisture sources for Greenland: influences on the ice core record of climate. Science 261:508–511

    Google Scholar 

  • Charles C, Rind D, Jouzel J, Koster R, Fairbanks R (1995) Seasonal precipitation timing and ice core records. Science 269:247–248

    Google Scholar 

  • Ciais P, White JWC, Jouzel J, Petit JR (1995) The origin of present day antarctic precipitation from surface snow deuterium excess data. J Geophys Res D9, 100:18917–18927

    Google Scholar 

  • Clemens S, Prell W (1992) Late pleistocene variability of Arabian sea summer monsoon winds and continental aridity: Eolian record from the lithogenic component of deep-sea sediments. Paleoceanography 5:109–145

    Google Scholar 

  • CLIMAP (1984) The last interglacial ocean. Quat Res 21:123–224

    Google Scholar 

  • Cuffey KM, Clow GD, Alley RB, Stuiver M, Waddington ED, Saltus RW (1995) Large Arctic temperature change at the glacial-Holocene transition. Science 270:455–458

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gunderstrup NS, Hammer CU, Steffensen JP, Sveinbjörnsdottir A, Jozel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220

    Article  Google Scholar 

  • Dansgaard W, Johnsen S, Clausen HB, Dahl-Jensen D, Gundestrup N, Hammer CU, Oeschger H (1984) North Atlantic climatic oscillations revealed by deep Greenland ice cores. In: Hansen JE, Takahashi T (eds) Climate processes and climate sensitivity. Am Geophys Union, Washington, D.C., pp 288–298

    Google Scholar 

  • Fisher DA (1991) Remarks on the deuterium excess in precipitation in cold regions. Tellus 43B:401–407

    Google Scholar 

  • Gallup C, Edwards L, Johnson RG (1994) The timing of high sea levels over the past 200000 years. Science 263:796–800

    Google Scholar 

  • Grootes PM, Stuiver M, White JWC, Johnsen SJ, Jouzel J (1993) Comparison of the oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554

    Article  CAS  Google Scholar 

  • Grousset FE, Biscaye PE, Revel M, Petit JR, Pye K, Joussaume S, Jouzel J (1992) Antarctic ice core dust at 18 Ky BP: isotopic constraints on origin and atmospheric circulation. Earth Planet Sci Lett 111:175–182

    Article  CAS  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth's orbit: pacemaker of the ice ages. Science 194:1121–1132

    Google Scholar 

  • Howard WL, Prell WL (1992) Late quaternary surface circulation of the Southern Indian ocean and its relationship to orbital variations. Paleoceanography 7:79–117

    Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger AL, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and climate, Part 1. D. Riedel, Hingham, MA, USA, pp 269–305

    Google Scholar 

  • Imbrie J, McIntyre A, Mix A (1989) Oceanic response to orbital forcing in the late Quaternary: observational and experimental strategies. In: Duplessy JC, Berger A, Schneider SH (eds) Climate and Geosciences. Riedel, Dordrecht, pp 121–164

    Google Scholar 

  • Johnsen SJ, Dansgaard W, White JW (1989) The origin of Arctic precipitation under present and glacial conditions. Tellus 41:452–469

    Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgard W, Fuhrer K, Gunderstrup NS, Hammer CU, Iverssen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–313

    Article  Google Scholar 

  • Johnsen SJ, Dansgaard W, Dahl-Jensen D, Gundestrup N (1995) Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotopic profiles. Tellus 47B:624–629

    Google Scholar 

  • Joussaume S, Jouzel J (1993) Paleoclimatic tracers: an investigation using an atmospheric general circulation model under ice age conditions. 2. Water isotopes. J Geophys Res 98:2807–2830

    Google Scholar 

  • Jouzel J, Merlivat L (1984) Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation. J Geophys Res 89:11749–11757

    Google Scholar 

  • Jouzel J, Lorius C, Petit JR, Genthon C, Barkov NI, Kotlyakov VM, Petrov VM (1987) Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160000 years). Nature 329:402–408

    Google Scholar 

  • Jouzel J, Raisbeck GM, Benoist JP, Yiou F, Lorius C, Raynaud D, Petit JR, Barkov NI, Korotkevitch YS, Kotlyakov VM (1989) A comparison of deep Antarctic ice cores and their implications for climate between 65 000 and 15 000 years ago. Quat Res 31:135–150

    Google Scholar 

  • Jouzel J, Barkov NI, Barnola JM, Bender M, Chappellaz J, Genthon C, Kotlyakov VM, Lipenkov V, Lorius C, Petit JR, Raynaud D, Raisbeck G, Ritz C, Sowers T, Stievenard M, Yiou F, Yiou P (1993) Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period. Nature 364:407–412

    Google Scholar 

  • Jouzel J, Koster RD, Suozzo RJ, Russell GL (1994a) Stable water isotope behaviour during the LGM: a GCM analysis. J Geophys Res 99:25791–25801

    Google Scholar 

  • Jouzel J, Lorius C, Johnsen SJ, Grootes P (1994b) Climate instabilities: Greenland and Antarctic records. C. R. Acad. Sci. Paris, 319, série II:65–77

    Google Scholar 

  • Jouzel J, Vaikmae R, Petit JR, Martin M, Duclos Y, Stiévenard M, Lorius C, Toots M, Mélières MA, Burckle LH, Barkov NI, Kotlyakov VM (1995) The two-step shape and timing of the last deglaciation in Antarctica. Clim Dyn 11:151–161

    Article  Google Scholar 

  • Koster RD, Jouzel J, Suozzo RJ, Russell GL (1992) Origin of July Antarctic precipitation and its influence on deuterium content: a GCM analysis. Clim Dyn 7:195–203

    Google Scholar 

  • Kukla G, An ZS, Melice JL, Gavin J, Xiao JL (1990) Magnetic susceptibility record of Chinese loess. Trans R Soc Edinburgh 81:263–288

    Google Scholar 

  • Labeyrie L, Labracherie M, Gorfti N, Pichon JJ, Duprat J, Vautravers M, Arnold M, Duplessy JC, Paterne M, Michel E, Caralp J, Turon JL. Hydrographic changes of the Southern Ocean (south-east Indian sector) over the last 230 ka. Paleoceanography (in press)

  • Lorius C, Merlivat L (1977) Distribution of mean surface stable isotope values in East Antarctica. Observed changes with depth in a coastal area. In: Isotopes and impurities in snow and ice. Proc Grenoble Symp Aug./Sep. 1975, IAHS Publ edited by IAHS, pp 125–137, IAHS, Vienna

    Google Scholar 

  • Lorius C, Jouzel J, Ritz C, Merlivat L, Barkov NI, Korotkevitch YS, Kotlyakov VM (1985) A 150 000-year climatic record from Antarctic ice. Nature 316:591–596

    Google Scholar 

  • Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC, Shackleton NJ (1987) Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0–300 000 years chronostratigraphy. Quat Res 27:1–30

    Google Scholar 

  • Mazaud A, Laj C, Bender M (1994) A geomagnetic chronology for antarctic ice accumulation. Geophys Res Lett 21:337–340

    Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84:5029–5033

    Google Scholar 

  • Petit JR, Mounier L, Jouzel J, Korotkevitch Y, Kotlyakov V, Lorius C (1990) Paleoclimatological implications of the Vostok core dust record. Nature 343:56–58

    Google Scholar 

  • Petit JR, White JW, Young NW, Jouzel J, Korotkevitch YS (1991) Deuterium excess in recent Antarctic snow. J Geophys Res 96:5113–5123

    Google Scholar 

  • Prell WL, Kutzbach JE (1987) Monsoon variability over the past 150 000 years. J Geophys Res 92:8411–8425

    Google Scholar 

  • Qin D, Petit JR, Jouzel J, Stievenard M (1994) Distribution of stable isotopes in surface snow along the route of the 1990 international Trans-Antarctica expedition. J Glaciol 40:107–118

    Google Scholar 

  • Ritz C (1992) UN modèle thermodynamique d'évolution pour le bassin glaciaire Antarticque Vostok — glacier Byrd: sensibilité aux valeurs des paramètres mal connus. Thèse de doctorat d'état, Université Joseph Fourier, Grenoble 1, France

    Google Scholar 

  • Salamatin AN, Lipenkov VY, Blinov KV (1994) Vostok (Antarctica) climate record time scale deduced from the analysis of a borehole-temperature profile. Ann Glaciol 20:207–214

    Google Scholar 

  • Shackleton NJ, Pisias NG (1985) Atmospheric carbon dioxide, orbital forcing, and climate. In: Sundquist E, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to Present. Geophys Monogr Ser 32. AGU, Washington, D.C., pp 303–317

    Google Scholar 

  • Sowers TA, Bender M, Raynaud D, Korotkevich YL (1992) The δ15N of O2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age-gas age differences. J Geophys Res 97:15683–15697

    Google Scholar 

  • Sowers T, Bender M, Labeyrie LD, Jouzel J, Raynaud D, Martinson D, Korotkevich YS (1993) 135 000 year Vostok — SPEC-MAP common temporal framework. Paleoceanography 8:737–766

    Google Scholar 

  • Steig EJ, Grootes PM, Stuiver M (1994) Seasonal precipitation timing and ice core record. Science 266:1885–1886

    Google Scholar 

  • Vostok Project Members (1995) International effort helps decipher mysteries of Paleoclimate from Antarctic ice cores. EOS 76:169 and 179

    Google Scholar 

  • Waelbroeck C, Jouzel J, Labeyrie L, Lorius C, Labracherie M, Stievenard M, Barkov NI (1995) Comparing the Vostok ice deuterium record and series from Southern Ocean core MD 88–770 over the last two glacial-interglacial cycles. Clim Dyn 12:113–123

    Google Scholar 

  • White JWC, Barlow LK, Gorodetzky D (1995) Deuterium excess and δD in the GISP2 ice core: reconstructions of ocean conditions form ice cores. GISP2/GRIP Meeting. Wolfeboro USA, 16–21 October

  • Yiou P, Genthon C, Ghil M, Jouzel J, Le Trent H, Barnola JM, Lorius C, Korotkevitch YN (1991) High frequency paleo-variability in climate and in CO2 levels form Vostok ice-core records. J Geophys Res 96:20365–20378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jouzel, J., Waelbroeck, C., Malaize, B. et al. Climatic interpretation of the recently extended Vostok ice records. Climate Dynamics 12, 513–521 (1996). https://doi.org/10.1007/BF00207935

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207935

Keywords

Navigation