Skip to main content
Log in

Evidence for an early Holocene climatic optimum in the Antarctic deep ice-core record

  • Holocene Change
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In the interpretation of the Antarctic deep ice-core data, little attention has been given to the Holocene part of the records. As far as translation of the stable isotope content in terms of temperature is concerned, this can be understood because expected temperature changes may be obscured by isotopic noise of various origins and because no 14C dating has yet been available for this type of sequence. In this article, we focus on the Dome C and Vostok cores and on a new 850-m long ice core drilled out at Komsomolskaïa by the Soviet Antarctic Expeditions. These three sites are located in East Antarctica, on the Antarctic plateau, in a region essentially undisturbed by ice-flow conditions, so that their detailed intercomparison may allow us to identify the climatically significant isotopic signal. Our results compare well with the proximal records of Southern Hemisphere high latitudes and support the existence of a warmer “climatic optimum” between 10 and 6 ka y BP. Maximum temperatures are reached just at the end of the last deglaciation, which confirms previous observations at high latitudes, in contrast with later dates for the Atlantic and hypsithermal optima in Europe and North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnola JM, Raynaud D, Korotkevitch YS, Lorius C (1987) Vostok ice core provides 160000 year record of atmospheric CO2. Nature 329:408–414

    Google Scholar 

  • Benoist JP (1986) Analyse spectrale de signaux glaciologiques: étude des glaces sédimentaires déposées à DomeC, morphologie du lit d'un glacier. USMT, Grenoble, pp 151–156

    Google Scholar 

  • Benoist JP, Jouzel J, Lorius C, Merlivat L, Pourchet M (1982) Isotope climatic record over the last 2.5 Ka from Dome C, Antarctica, ice cores. Ann Glaciol 3:17–21

    Google Scholar 

  • Bradley RS (1990) Holocene palaeoclimatology of the Queen Elizabeth islands, Canadian Arctic. Quat Sci Rev 9:365–384

    Google Scholar 

  • Budd WF, Jenssen D, Radock U (1971) Derived physical characteristics of the Antarctic ice sheet. University of Melbourne publication 18, p 32

  • Chappelaz J, Barnola JM, Raynaud D, Korotkevitch YS, Lorius C (1990) Atmospheric CH4 record over the last climatic cycle revealed by the Vostok ice core. Nature 345:127–131

    Google Scholar 

  • Clapperton CM, Sugden DE, Birnie J, Wilson MJ (1989) Lateglacial and Holocene glacier fluctuations and environmental change on south Georgia, southern Ocean. Q Res 31:210–228

    Google Scholar 

  • Crowley TJ (1990) Are there any satisfactory geologic analogs for a future greenhouse warming? J Clim 3:1282–1292

    Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitations. Tellus 16:436–468

    Google Scholar 

  • De Angelis M, Barkov NI, Petrov VN (1987) Aerosol content over the last climatic cycle (160 Kyr) from an Antarctic ice core. Nature 325:318–321

    Google Scholar 

  • Fisher DA, Reeh N, Clausen HB (1985) Stratigraphic noise in time series derived from ice cores. Ann Glaciol 7:76–83

    Google Scholar 

  • Folland CK, Karl TR, Vinnikov KY (1990) Observed climate variations and change. Climate Change, the IPCC scientific assessment. WMO/UNEP. Cambridge University Press, Cambridge, pp 201–238

    Google Scholar 

  • Gallimore RG, Kutzbach JE (1989) Effects of soil moisture on the sensitivity of a climate moded to earth orbital fotcing at 9000 yr BP. Clim Change 14:175–205

    Google Scholar 

  • Goede A, Hitchman MA (1983) Late Quaternary climatic change evidence from a Tasmanian speleothem. Late Cenozoic Palaeoclimates of the Southern Hemisphere. Balkema, Boston, pp 221–232

    Google Scholar 

  • Hays J, Imbrie J, Shackleton NJ (1976) Variations in the Earth's orbit: pacemaker of the ice ages. Science 194:1121–1132

    Google Scholar 

  • Heusser C (1983) Late Quaternary climates of Chile. Late Cenozoic Palaeoclimates of the Southern Hemisphere. Balkema, Boston, pp 59–83

    Google Scholar 

  • Huntley B, Prentice CP (1988) July temperatures in Europe from pollen data, 6000 years Before Present. Science 241:687–690

    Google Scholar 

  • Johnsen SJ (1977) Stable isotope homogenisation of polar snow and ice. Isotopes and impurities in snow and ice. IAHS publication 118:210–219

    Google Scholar 

  • Johnsen SJ (1983) Diffusion of stable isotopes. The Climatic record in polar ice sheets. Cambridge University Press, Cambridge, pp 58–63

    Google Scholar 

  • Johnsen SJ, Dansgaard W, Clausen HB, Langway CC (1972) Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235:429–434

    Google Scholar 

  • Joussaume S (1987) Simulations du climat du dernier maximum glaciaire a l'aide d'un modèle de circulation générale de l'atmosphère incluant une modélisation du cycle des isotopes de l'eau et des poussieres d'origine désertique. Université Pierre et Marie Curie, pp 375–460

  • Jouzel J, Merlivat L (1984) Deuterium and oxygen 18 in precipitation: modeling of the isotopic effect during snow formation. J Geophys Res 89:749–757

    Google Scholar 

  • Jouzel J, Merlivat L, Lorius C (1982) Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the glacial maximum. Nature 299:688–691

    Google Scholar 

  • Jouzel J, Lorius C, Petit JR, Genthon C, Barkov NI, Kotlyakov VM, Petrov VM (1987) Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160000 yr). Nature 329:403–408

    Google Scholar 

  • Jouzel J, fBarkov NI, Barnola JM, Genthon C, Korotkevitch YS, Kotlyakov VM, Legrand M, Lorius C, Petit JR, Petrov VN, Raisbeck G, Raynaud D, Ritz C, Yiou F (1989a) Q Int 2:15–24

    Google Scholar 

  • Jouzel J, Raisbeck G, Benoist JP, Yiou F, Lorius C, Raynaud D, Petit JR, Barkov NI, Korotkevitch YS, Kotlyakov VM (1989b) A comparison of deep Antarctic ice cores and their implications for climate between 65000 and 15000 years ago. Quat Res 31:135–150

    Google Scholar 

  • Jouzel J, Petit J-R, Barkov NI, Barnola JM, Chappelaz J, Ciais P, Kotlyakov VM, Lorius C, Petrov VM, Raynaud D, Ritz C (1991) The last deglaciation in Antarctica: further evidence of “younger Dryas” type event. In: Bard E, Broecker WS (eds) The last deglaciation: absolute and radiocarbon chronologies. ASI series (in press)

  • Koerner RM, Fisher DA (1990) A record of Holocene summer climate from a Canadian high-Arctic ice core. Nature 343:630–631

    Google Scholar 

  • Kutzbach JE, Guetter PJ (1986) The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J Atmos Sci 43:1726–1759

    Google Scholar 

  • Kutzbach JE, Gallimore RG (1988) Sensitivity of acoupled atmosphere-mixed layer ocean model to changes in orbital forcing at 9000 years BP. J Geophys Res 93:803–821

    Google Scholar 

  • Labeyrie LD, Duplessy JC, Blanc PL (1987) Variations of mode of formation and temperature of oceanic deep waters over the past 125000 years. Nature 327:477–482

    Google Scholar 

  • Labracherie M, Labeyrie LD, Duprat J, Bard E, Arnold M, Pichon JJ, Duplessy JC (1989) The last deglaciation in the southern Ocean. Paleoceanography 4:629–638

    Google Scholar 

  • Lamb HH (1977) Climate, present, past and future, vol 2. Climatic history and the future. Methuen, London, pp 363–422

    Google Scholar 

  • Legrand M, Delmas RJ (1987) A 220-yr continuous record of volcanic H2SO4 in the Antarctic ice sheet. Nature 327:671–676

    Google Scholar 

  • Lorius C, Merlivat L (1977) Distribution of mean surface isotope values in East Antarctica: observed changes with depth in coastal areas. Isotopes and impurities in snow and ice. IAHS publication 118:125–137

    Google Scholar 

  • Lorius C, Merlivat L, Jouzel J, Pourchet M (1979) A 30000-yr isotope climatic record from Antarctic ice. Nature 280:644–648

    Google Scholar 

  • Lorius C, Jouzel J, Ritz C, Merlivat L, Barkov NI, Korotkevitch YS, Kotlyakov VM (1985) A 150000 year climatic record from Antarctic ice. Nature 316:591–596

    Google Scholar 

  • Macphail MK (1979) Vegetation and climates in southern Tasmania since the last glaciation. Quat Res 11:306–341

    Google Scholar 

  • Markgraf V (1983) Late and postglacial vegetational and paleoclimatic changes in Subantarctic temperate, and arid environments in Argentina. Palynology 7:43–70

    Google Scholar 

  • Markgraf V (1989) Palaeoclimates in Central and South America since 18000 BP based on pollen and lake-level records. Quat Sci Rev 8:1–24

    Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84:5029–5033

    Google Scholar 

  • Mitchell JFB (1990) Greenhouse warming: is the mid-Holocene a good analogue? J Clim 3:1177–1192

    Google Scholar 

  • Mitchell JFB, Grahame NS, Needham KJ (1988) Climate simulations for 9000 years before present: seasonal variations and the effect of the Laurentide ice sheet. J Geophys Res 93:8283–8303

    Google Scholar 

  • Neftel A, Oeshger H, Staffelbach T, Stauffer B (1988) CO2 record in the Byrd ice core 50000–5000 years BP. Nature 331:609–611

    Google Scholar 

  • Nicolaïev VI, Koltyakov VM, Smirnov KE (1988) Isotope studies of the ice core from the Komsomolskaïa station, Antarctica. Data of glaciological studies. USSR Acad Sci 63:97–102

    Google Scholar 

  • Petit JR, White JWC, Young NW, Jouzel J, Korotkevich YS (1991) Deuterium excess in recent Antarctic snow. J Geophys Res 96:5113–5122

    Google Scholar 

  • Raisbeck GM, Yiou F, Bourles D, Lorius C, Jouzel J, Barkov NI (1987) Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period. Nature 326:273–277

    Google Scholar 

  • Ritchie JC, Cwynar LC, Spear RW (1983) Evidence from NorthWest Canada for an early Holocene Milankovitch thermal maximum. Nature 305:126–128

    Google Scholar 

  • Robin G Q de (1977) Ice cores and climatic changes. Phil Trans R Soc London 280:143–168

    Google Scholar 

  • Robin G Q de (1983) Isotopic temperature noise. The climatic record in polar ice sheets. Cambridge University Press, Cambridge, pp 184–189

    Google Scholar 

  • Salinger (1983) New Zealand climate: the last 5 million years. Late Cenozoic palaeoclimates of the Southern Hemisphere. Balkema, Boston, pp 59–83

    Google Scholar 

  • Short DA, Mengel JG (1986) Tropical climatic phase lags and Earth's precession cycle. Nature 323:48–50

    Google Scholar 

  • Stine S, Stine M (1990) A record from Lake Cardiel of climate change in southern South America. Nature 345:705–708

    Google Scholar 

  • Sugden DE, Clapperton CM (1980) 1West Antarctic ice sheet fluctuations in the Antarctic Peninsula area. Nature 286:378–381

    Google Scholar 

  • Webb T (1985) Holocene palynology and climate. Paleoclimate analyses and modeling. Wiley, Chichester, pp 163–195

    Google Scholar 

  • Whillans IM, Grootes PM (1985) Isotopic diffusion in cold snow and firn. J Geophys Res 90:3910–3918

    Google Scholar 

  • Young SB, Schofield EK (1973) Pollen evidence for late quaternary climate changes on Kerguelen islands. Nature 245:311–312

    Google Scholar 

  • Young NW, Pourchet M, Kotlyakov VM, Korolev PA, Dyugerov MB (1982) Accumulation distribution in the IAGP area, Antarctica: 90° E-150° E 333–338

  • Yoshino MM, Uruchibara K (1978) Paleoclimate in Japan since the last ice age. Climatol Notes 22:1–24

    Google Scholar 

  • Zhang Y, Wang WC (1990) The surface temperature in China during the mid-Holocene. Zhu Kezhen Centennial Memorial Collections. Science Press, Beijing (in press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciais, P., Petit, J.R., Jouzel, J. et al. Evidence for an early Holocene climatic optimum in the Antarctic deep ice-core record. Climate Dynamics 6, 169–177 (1992). https://doi.org/10.1007/BF00193529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193529

Keywords

Navigation