Skip to main content

Advertisement

Log in

Greenland surface mass balance simulated by a regional climate model and comparison with satellite-derived data in 1990–1991

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The 1990 and 1991 ablation seasons over Greenland are simulated with a coupled atmosphere-snow regional climate model with a 25-km horizontal resolution. The simulated snow water content allows a direct comparison with the satellite-derived melt signal. The model is forced with 6-hourly ERA-40 reanalysis at its boundaries. An evaluation of the simulated precipitation and a comparison of the modelled melt zone and the surface albedo with remote sensing observations are presented. Both the distribution and quantity of the simulated precipitation agree with observations from coastal weather stations, estimates from other models and the ERA-40 reanalysis. There are overestimations along the steep eastern coast, which are most likely due to the “topographic barrier effect”. The simulated extent and time evolution of the wet snow zone compare generally well with satellite-derived data, except during rainfall events on the ice sheet and because of a bias in the passive microwave retrieved melt signal. Although satellite-based surface albedo retrieval is only valid in the case of clear sky, the interpolation and the correction of these data enable us to validate the simulated albedo on the scale of the whole Greenland. These two comparisons highlight a large sensitivity of the remote sensing observations to weather conditions. Our high-resolution climate model was used to improve the retrieval algorithms by taking more fully into account the atmosphere variability. Finally, the good agreement of the simulated melting surface with the improved satellite signal allows a detailed estimation of the melting volume from the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdalati W, Steffen K (1995) Passive microwave-derived snow melt regions on the Greenland ice sheet. Geophys Res Lett 22:787–790

    Article  Google Scholar 

  • Abdalati W, Steffen K (1997) Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data. J Climate 10:165–175

    Article  Google Scholar 

  • Abdalati W, Steffen K (2001) Greenland ice sheet melt extent: 1979–1999. J Geophys Res 106:33983–3389

    Article  Google Scholar 

  • Armstrong RL, Brodzik MJ (1995) Earth-gridded SSM/I data set for cryospheric studies and global change monitoring. In: A1 symposium of COSPAR scientific commission A, Hamburg, 11–21 July 1994. Proceeding, satellite monitoring of the earth’s surface and atmosphere, November 1995, pp 115–116

  • Armstrong RL, Knowles KW, Brodzik MJ, Hardman MA (1994) DMSP SSM/I Pathfinder daily EASE-Grid brightness temperatures, May to September 1990 and 1991. National Snow and Ice Data Center, Boulder. Digital media and CD-ROM

  • Bamber JL, Layberry RL, Gogineni SP (2001) A new ice thickness and bed data set for the Greenland ice sheet: part I, Measurement, data reduction, and errors. J Geophys Res 106:33773–33780

    Article  Google Scholar 

  • Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass flux convection scheme for regional and global models. Q J R Meteorol Soc 127:869–886

    Article  Google Scholar 

  • Box JE, Rinke A (2003) Evaluation of Greenland ice sheet surface climate in the HIRHAM regional climate model. J Climate 16:1302–1319

    Google Scholar 

  • Box JE, Bromwich DH, Bai L-S (2004) Greenland ice sheet surface mass balance for 1991–2000: application of polar MM5 mesoscale model and in-situ data. J Geophys Res, vol 109, no. D16, D16105. doi: 10.1029/2003JD004451.

  • Brasseur O, Gallée H, Creutin J-D, Lebel T, Marbaix P (2001) High resolution simulations of precipitation over the Alps with the perspective of coupling with a hydrological model. In: Beniston M (ed) Advances in global change research. 10:75–100

  • Bromwich DH, Chen Q, Bai L, Cassano EN, Li Y (2001) modelled precipitation variability over the Greenland ice sheet. J Geophys Res 106:33891–33908

    Article  Google Scholar 

  • Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snowcover stratigraphy for operational avalanche forecasting. J Glaciol 38:13–22

    Google Scholar 

  • Bugnion V, Stone PH (2002) Snowpack model estimates of the mass balance of the Greenland ice sheet and its changes over the twenty first century. Climate Dynam 20:87–106

    Article  Google Scholar 

  • Businger J (1973) Turbulent transfer in the atmospheric surface layer. Workshop on micrometeorology. American Meteorological Society, pp 67–100

  • Cappelen J, Jorgensen BV, Laursen EV, Stannius LS, Thomsen RS (2000) The observed climate of Greenland, 1958–99, with climatological standard normals, 1961–1990. DMI Tech. rep. 00–18, DMI, Copenhage, Danemark, 149 pp

  • Cassano JJ, Box JE, Bromwich DH, Li L, Steffen K (2001) Evaluation of Polar MM5 simulations of Greenland’s atmospheric circulation. J Geophys Res 106:33891–33908

    Article  Google Scholar 

  • Chen Q-S, Bromwich DH, Bai L (1997) Precipitation over Greenland retrieved by a dynamic method and its relation to cyclonic activity. J Clim 10:839–870

    Article  Google Scholar 

  • Chevallier F, Bauer P (2003) Model rain and clouds over oceans: comparison with SSM/I observations. Mon Wea Rev 131:1240–1255

    Article  Google Scholar 

  • Christensen OB, Christensen JH, Machenhauer B, Botzet M (1998) Very high-resolution regional climate simulations over Scandinavia-present climate. J Climate 11:3204–3229

    Article  Google Scholar 

  • Davies H (1983) Limitations of some common lateral boundary schemes used in regional NWP models. Mon Wea Rev 111:1002–1012

    Article  Google Scholar 

  • De Ridder K, Gallée H (1998) Land surface-induced regional climate change in Southern Israel. J Appl Meteorol 37:1470–1485

    Article  Google Scholar 

  • De Ridder K, Schayes G (1997) The IAGL land surface model. J Appl Meteorol 36:167–182

    Article  Google Scholar 

  • Dethloff K, Schwager M, Christensen JH, Kiilsholm S, Rinke A, Dorn W, Jung-Rothenhäusler F, Fischer H, Kipfstuhl S, Miller H (2002) Recent Greenland accumulation estimated from regional model simulations and ice core analysis. J Climate 15:2821–2832

    Article  Google Scholar 

  • di Sarra A, Cacciani M, Fiocco G, Fua D (2002) Lidar observation of polar stratospheric clouds over northern Greenland in the period 1990–1997. J Geophys Res 107:D12. doi: 10.1029/2001JD001074

  • Duynkerke PG (1988) Application of the E-ε turbulence closure model to the neutral and stable atmospheric boundary layer. J Atmos Sci 45:865–880

    Article  Google Scholar 

  • Duynkerke PG (1991) Radiation fog: a comparison of model simulation with detailed observations. Mon Wea Rev 119:324–341

    Article  Google Scholar 

  • Duynkerke PG, van den Broeke MR (1994) Surface energy balance and katabatic flow over glacier and tundra during GIMEX-91. Global Planet. Change 9:17–28

    Article  Google Scholar 

  • Eppler D, Farmer L, Lohanick A, Anderson M, Cavalieri D, Comiso J, Gloersen P, Garrity C, Grenfell T, Hallikainen M, Maslanik J, Mätzler C, Melloh R, Rubinstein I, Swift C (1992) Passive microwave signatures of sea ice. In: Carsey F (ed) Microwave remote sensing of sea ice, Geophysical Monograph, vol. 68, chap 4, American Geophysical Union

  • Fouquart Y, Bonnel B (1980) Computation of the solar heating of the earth’s atmosphere: a new parameterization. Beitr Phys Atmos 53:35–62

    Google Scholar 

  • Fowler C, Maslanik J, Haran T, Scambos T, Key J, Emery W (2000) AVHRR polar pathfinder twice-daily 5 km EASE-grid composites. National Snow and Ice Data Center, Boulder, Digital media. See also http://nsidc.org/data/docs/daac/nsidc0066_avhrr_5km.gd.html.

  • Gallée H (1995) Simulation of the mesocyclonique activity in the Ross Sea, Antarctica. Mon Wea Rev 123:2051–2069

    Article  Google Scholar 

  • Gallée H, Duynkerke PG (1997) Air-snow interaction and the surface energy and mass balance over the melting zone of West Greenland during the Greenland Ice Margin experiment. J Geophys Res 102:13813–13824

    Article  Google Scholar 

  • Gallée H, Schayes G (1994) Development of a three-dimensional meso-γ primitive equations model. Mon Wea Rev 122:671–685

    Article  Google Scholar 

  • Gallée H, Guyomarc’h G, Brun E (2001) Impact of the snow drift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Boundary Layer Meteorol 99:1–19

    Article  Google Scholar 

  • Gallée H, Moufouma-Okia W, Bechtold P, Brasseur O, Dupays I, Marbaix P, Messager C, Ramel R, Lebel T (2004) A high-resolution simulation of a West African rainy season using a regional climate model. J Geophys Res 109:D05108. doi: 10.1029/2003JD004020

    Google Scholar 

  • Giorgi F, Mearns LO (1999) Regional climate modeling revisited. J Geophys Res 104:6335–6352

    Article  Google Scholar 

  • Hanna E, Huybrechts P, Mote T (2002) Surface mass balance of the Greenland ice sheet from climate analysis data and accumulation/runoff models. Ann Glaciol 35:67–72

    Article  Google Scholar 

  • Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Dai X, Maskell K, Johnson C (2001) IPCC: climate change 2001: the scientific basis. Contribution of Workings Group I to the Third Assessment Report of the Intergovernmental Panel on climate change, Cambridge University Press, Cambridge, 881 pp

  • Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation, vol 10, no 32, American Mateorological Society, Boston. Meteor Monogr, 84 pp

  • Key J (1999) The cloud and surface parameter retrieval (CASPR) system for polar AVHRR. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, Madison, 59 pp

  • Key J, Wang X, Stoeve J, Fowler C (2001) Estimating the cloudy-sky albedo of sea ice and snow from space. J Geophys Res 106:12489–12497

    Article  Google Scholar 

  • Kiilsholm S, Christensen JH, Dethloff K, Rinke A (2003) Net accumulation of the Greenland ice sheet: High-resolution climate modelling of regional climate change in the Arctic. Geophys Res Lett 30:1485 doi: 10.1029/2002GL015742.

    Google Scholar 

  • Krabill W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, Yngel J (1999) Rapid thinning of parts of the southern Greenland ice sheet. Science 283:1522–1524

    Article  PubMed  Google Scholar 

  • Lefebre F, Gallée H, van Ypersele J, Greuell W (2003) Modeling of snow and ice melt at ETH-camp (west Greenland): a study of surface albedo. J Geophys Res 108(D8). doi: 10.1029/2001JD001160

  • Lefebre F, Fettweis X, Gallée H, van Ypersele J, Marbaix P, Greuell W, Calanca P (2004) Evaluation of a high-resolution regional climate simulation over Greenland. Climate Dynam (in revision)

  • Lin Y-L, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Appl Meteorol 22:1065–1092

    Article  Google Scholar 

  • Marbaix P, Gallée H, Brasseur O, van Ypersele J (2003) Lateral boundary conditions in regional climate models: a detailed study of relaxation procedure. Mon Wea Rev 131:461–479

    Article  Google Scholar 

  • Morcrette J (1984) Sur la paramétrisation du rayonnement dans les modèles de circulation générale atmosphérique. PhD Thesis, Universite des Sciences et Technique de Lille, Lille, France, 373 pp

  • Mote TL (2003) Estimation of runoff rates, mass balance, and elevation changes on the Greenland ice sheet from passive microwave observations. J Geophys Res 108(D2):4056. doi: 10.1029/2001JD002032

    Google Scholar 

  • Mote TL, MR Anderson (1995) Variations in snowpack melt on the Greenland ice sheet based on passive microwave-measurements. J Glaciol 41:51–60

    Google Scholar 

  • Mote TL, Anderson MR, Kuivinen KC, Rowe CM (1993) Passive microwave-derived spatial and temporal variations of summer melt on the Greenland ice sheet. Ann Glaciol 17:233–238

    Google Scholar 

  • Murphy BF, Marsiat I, Valdes P (2002) Atmospheric contributions to the surface mass balance model of Greenland in the HadCM3 atmospheric model. J Geophys Res 107(D21):4556. doi: 10.1029/2001JD000389

    Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability. Part II: Development of 1901–96 monthly grids of terrestrial surface climate. J Climate 13:2217–2238

    Article  Google Scholar 

  • Oerlemans J, Vugts H (1993) A meteorological experiment in the melting zone of the Greenland Ice Sheet. Bull Am Meteorol Soc 74:355–365

    Article  Google Scholar 

  • Ohmura A, Steffen K, Blatter H, Greuell W, Rotach M, Stober M, Konzelmann T, Forrer J, Abe-Ouchi A, Steiger D, Niederbaumer G (1992) Energy and mass balance during the melt season at the equilibrium line altitude, Paakitsoq, Greenland ice sheet: Progress report 2, Department of Geography, Swiss Federal Institute of Technology, Zurich

  • Pfeffer W, Meier M, Illangasekare T (1991) Retention of Greenland runoff by refreezing: implication for projected future sea level change. J Geophys Res 96:22117–22124

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Climate 7:929–948

    Article  Google Scholar 

  • Sinclair MR (1994) A diagnostic model for estimating orographic precipitation. J Appl Meteorol 33:1163–1175

    Article  Google Scholar 

  • Stroeve J (2001) Assessment of Greenland albedo variability from advanced very high resolution radiometer Polar Pathfinder data set. J Geophys Res 106:33989–34006

    Article  Google Scholar 

  • Stroeve J, Nolin A, Steffen K (1997) Comparison of AVHRR-derived and in situ surface albedo over Greenland ice sheet. Remote Sens Environ 62:262–276

    Article  Google Scholar 

  • Stroeve J, Box J, Fowler C, Haran T, Key J (2000) Intercomparison between in situ and AVHRR Polar Pathfinder-derived surface albedo over Greenland. Remote Sens Environ 75:360–374

    Article  Google Scholar 

  • Torinesi O, Fily M, Genthon C (2003) Variability and trends of the summer melt period of Antarctic ice margin since 1980 from microwave sensors. J Climate 16:1047–1060

    Article  Google Scholar 

  • Ulaby F, Stiles W (1980) The active and passive microwave response to snow parameters. 2: water equivalent of dry snow. J Geophys Res 85:1045–1049

    Article  Google Scholar 

  • Van de Wal RSW, Oerlemans J (1994) A energy balance model for the Greenland ice sheet. Global Planet Change 9:15–131

    Google Scholar 

  • Van den Broeke MR, Gallée H (1996) Observation and simulation of barrier winds at the western margin of the Greenland ice sheet. Q J R Meteorol Soc 122:1365–1383

    Article  Google Scholar 

  • Van den Broeke MR, Duynkerke PG, Oerlemans J (1994) The observed katabatic flow at the edge of Greenland ice sheet during GIMEX-91. Global Planet. Change 9:3–15

    Article  Google Scholar 

  • Wiscombe WJ, Warren SG (1980) A Model for the spectral albedo of snow. I: pure snow. J Atmos Sci 37(12):2712–2733

    Article  Google Scholar 

  • Xie P, Arkin P (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. BAMS 78:2539–2558

    Article  Google Scholar 

  • Xue Y, Sun S, Kahan DS, Jiao Y (2003) Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites. J Geophys Res 108(D22):8859. doi: 10.1029/2002JD003174

    Google Scholar 

  • Zwally JH, Giovinetto MB (2001) Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland. J Geophys Res 106:33717–33728

    Article  Google Scholar 

  • Zwally JH, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297:218–222; published online 6 June 2002 [DOI: 10.1126/science.1072708]

    Google Scholar 

Download references

Acknowledgments

Xavier Fettweis is a research fellow of the Belgian National Fund for Scientific Research. Comments by Prof. Roger Barry helped improve the manuscript. The authors acknowledge the National Snow and Ice Data Center (NSIDC, Boulder, CO, USA) for providing the Bamber et al. (2001) topography, the Bromwich et al. (2001) precipitation datasets, the SSM/I data (Abdalati and Steffen 1997) and the AVHRR Polar Pathfinder Twice-Daily 5 km EASE-Grid Composites products (Fowler et al. 2000) (see http://nsidc.org/). The project was supported by the French programme ACI-C3 (Ministère de la Recherche). All major computations were realized with IDRIS computing resources (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Fettweis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fettweis, X., Gallée, H., Lefebre, F. et al. Greenland surface mass balance simulated by a regional climate model and comparison with satellite-derived data in 1990–1991. Climate Dynamics 24, 623–640 (2005). https://doi.org/10.1007/s00382-005-0010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-005-0010-y

Keywords

Navigation