Skip to main content

Advertisement

Log in

High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

About 75 % of the Antarctic surface mass gain occurs over areas below 2,000 m asl, which cover 40 % of the grounded ice-sheet. As the topography is complex in many of these regions, surface mass balance modelling is highly dependent on horizontal resolution, and studying the impact of Antarctica on the future rise in sea level requires physical approaches. We have developed a computationally efficient, physical downscaling model for high-resolution (15 km) long-term surface mass balance (SMB) projections. Here, we present results of this model, called SMHiL (surface mass balance high-resolution downscaling), which was forced with the LMDZ4 atmospheric general circulation model to assess Antarctic SMB variability in the twenty first and the twenty second centuries under two different scenarios. The higher resolution of SMHiL better reproduces the geographical patterns of SMB and increase significantly the averaged SMB over the grounded ice-sheet for the end of the twentieth century. A comparison with more than 3200 quality-controlled field data shows that LMDZ4 and SMHiL reproduce the observed values equally well. Nevertheless, field data below 2,000 m asl are too scarce to efficiently show the added value of SMHiL and measuring the SMB in these undocumented areas should be a future scientific priority. Our results suggest that running LMDZ4 at a finer resolution (15 km) may give a future increase in SMB in Antarctica that is about 30 % higher than by using its standard resolution (60 km) due to the higher increase in precipitation in coastal areas at 15 km. However, a part (∼15 %) of these discrepancies could be an artefact from SMHiL since it neglects the foehn effect and likely overestimates the precipitation increase. Future changes in the Antarctic SMB at low elevations will result from the competition between higher snow accumulation and runoff. For this reason, developing downscaling models is crucial to represent processes in sufficient detail and correctly model the SMB in coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agosta C (2012) Évolution du bilan de masse de surface Antarctique par régionalisation physique et conséquences sur les variations du niveau des mers. PhD thesis, Université de Grenoble

  • Agosta C, Favier V, Genthon C, Gallée H, Krinner G, Lenaerts JTM, van den Broeke MR (2012) A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Clim Dyn 38:75–86. doi:10.1007/s00382-011-1103-4

    Article  Google Scholar 

  • van den Broeke MR, van de Berg WJ, van Meijgaard E, Reijmer C (2006) Identification of Antarctic ablation areas using a regional atmospheric climate model. J Geophys Res 111(D18):D18110. doi:10.1029/2006JD007127

    Article  Google Scholar 

  • Ligtenberg SRM, van de Berg WJ, van den Broeke MR, Rae JGL, van Meijgaard E (2013) Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim Dyn. doi:10.1007/s00382-013-1749-1

  • Arthern RJ, Winebrenner DP, Vaughan DG (2006) Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J Geophys Res 111:D06,107. doi:10.1029/2004JD005667

    Article  Google Scholar 

  • Bamber JL, Gomez-Dans J, Griggs J (2009) Antarctic 1 km digital elevation model (DEM) from combined ERS-1 radar and ICES at laser satellite altimetry. Tech. rep., National Snow and Ice Data Center, Boulder, Colorado

  • van de Berg WJ, van den Broeke MR, Reijmer C, van Meijgaard E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J Geophys Res 111:D11,104. doi:10.1029/2005JD006495

    Article  Google Scholar 

  • Bintanja R (1999) On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Rev Geophys 37(3):337–359. doi:10.1029/1999RG900007

    Article  Google Scholar 

  • Bromwich DH, Fogt RL (2004) Strong trends in the skill of the ERA-40 and NCEP–NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958–2001. J Clim 17:4603–4618. doi:10.1175/3241.1

    Article  Google Scholar 

  • Ding M, Xiao C, Li Y, Ren J, Hou S, Jin B, Sun B (2011) Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J Glaciol 57(204):658–666. doi:10.3189/002214311797409820

    Article  Google Scholar 

  • Favier V, Agosta C, Genthon C, Arnaud L, Trouvillez A, Gallée H (2011) Modeling the mass and surface heat budgets in a coastal blue ice area of Adelie Land, Antarctica. J Geophys Res 116:F03,017. doi:10.1029/2010JF001939

    Article  Google Scholar 

  • Favier V, Agosta C, Parouty S, Durand G, Delaygue G, Gallée H, Drouet AS, Trouvilliez A, Krinner G (2012) An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere Discussions 6:3667–3702. doi:10.5194/tcd-6-3667-2012

    Article  Google Scholar 

  • Gallée H, Duynkerke P (1997) Air-snow interactions and the surface energy and mass balance over the melting zone of west Greenland during the Greenland ice margin experiment. J Geophys Res 102(D12):13,813–13,824. doi:10.1029/96JD03358

    Article  Google Scholar 

  • Gallée H, Agosta C, Gential L, Favier V, Krinner G (2011) A downscaling approach towards high-resolution surface mass balance over Antarctica. Surveys Geophys. doi:10.1007/s10712-011-9125-3

  • Genthon C, Lardeux P, Krinner G (2007) The surface accumulation and ablation of a coastal blue-ice area near Cap Prudhomme, Terre Adélie, Antarctica. J Glaciol 53(183):635–645(11). doi:10.3189/002214307784409333

    Article  Google Scholar 

  • Genthon C, Krinner G, Castebrunet H (2009) Antarctic precipitation and climate-change predictions: horizontal resolution and margin vs plateau issues. Ann Glaciol 50(50):55–60. doi:10.3189/172756409787769681

    Article  Google Scholar 

  • Genthon C, Magand O, Krinner G, Fily M (2009) Do climate models underestimate snow accumulation on the Antarctic plateau? A re-evaluation of/from in situ observations in East Wilkes and Victoria Lands. Ann Glaciol 50(50):61–65. doi:10.3189/172756409787769735

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior C, Banks H, Gregory J, Johns T, Mitchell J, Wood R (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2-3):147–168. doi:10.1007/s003820050010

    Article  Google Scholar 

  • Gregory JM, Huybrechts P (2006) Ice-sheet contributions to future sea-level change. Philos T R Soc A 364(1844):1709–1731. doi:10.1098/rsta.2006.1796

    Article  Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. doi:10.1007/s00382-006-0158-0

    Article  Google Scholar 

  • Huybrechts P, Gregory J, Janssens I, Wild M (2004) Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Glob Planet Change 42(1-4):83–105. doi:10.1016/j.gloplacha.2003.11.011

    Article  Google Scholar 

  • Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19(16):3952–3972. doi:10.1175/JCLI3827.1

    Article  Google Scholar 

  • Krinner G, Genthon C, Li ZX, Le Van P (1997) Studies of the Antarctic climate with a stretched-grid general circulation model. J Geophys Res 102(D12):13,731–13,745. doi:10.1029/96JD03356

    Article  Google Scholar 

  • Krinner G, Magand O, Simmonds I, Genthon C, Dufresne JL (2007) Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries. Climate Dynamics 28(2-3):215–230. doi:10.1007/s00382-006-0177-x

    Article  Google Scholar 

  • Krinner G, Guicherd B, Ox K, Genthon C, Magand O (2008) Influence of oceanic boundary conditions in simulations of Antarctic climate and surface mass balance change during the coming century. Journal of Climate 21(5):938–962. doi:10.1175/2007JCLI1690.1

    Article  Google Scholar 

  • Lenaerts JTM, van den Broeke MR (2012) Modeling drifting snow in Antarctica with a regional climate model: 2 Results. Journal of Geophysical Research 117(D5):D05,109. doi:10.1029/2010JD015419

    Google Scholar 

  • Lenaerts JTM, van den Broeke MR, Berg WJVD, Meijgaard EV, Munneke PK (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophysical Research Letter 39(4):L04,501. doi:10.1029/2011GL050713

    Article  Google Scholar 

  • van Lipzig N, van Meijgaard E, Oerlemans J (2002) Temperature sensitivity of the Antarctic surface mass balance in a regional atmospheric climate model. Journal of climate 15(19):2758–2774. doi:10.1175/1520-0442(2002)015<2758:TSOTAS>2.0.CO;2

    Article  Google Scholar 

  • Lowe JA, Hewitt CD, van Vuuren DP, Johns TC, Stehfest E, Royer JF, van der Linden PJ (2009) New Study For Climate Modeling, Analyses, and Scenarios. Eos Trans AGU 90(21):181. doi:10.1029/2009EO210001

    Article  Google Scholar 

  • Magand O, Genthon C, Fily M, Krinner G, Picard G, Frezzotti M, Ekaykin AA (2007) An up-to-date quality-controlled surface mass balance data set for the 90°-180°E Antarctica sector and 1950-2005 period. Journal of Geophysical Research 112(D12):D12,106. doi:10.1029/2006JD007691

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset - A new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Monaghan AJ, Bromwich DH, Wang SH (2006) Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Philos T R Soc A 364(1844):1683–1708. doi:10.1098/rsta.2006.1795

    Article  Google Scholar 

  • Motoyama H, Enomoto H, Miyahara M, Koike J (1995) Glaciological data collected by the 34th Japanese Antarctic Research Expedition in 1993. Tech. Rep. 202, National Institute of Polar Research

  • van Ommen T, Morgan V, Curran M (2004) Deglacial and holocene changes in accumulation at Law Dome, East Antarctica. Annals of Glaciology 39(1):359–365. doi:10.3189/172756404781814221

    Article  Google Scholar 

  • Pettré P, Pinglot J, Pourchet M, Reynaud L (1986) Accumulation distribution in terre Adélie, Antarctica: effect of meteorological parameters. Journal of Glaciology 32(112112):486–500

    Google Scholar 

  • Pfeffer W, Meier M, Illangasekare TK (1991) Retetion of Greenland runoff by refreezing - Implication for projected future sea-level change. Journal of Geophysical Research 96(C12):22,117–22,124

    Article  Google Scholar 

  • Pielke R, Wilby R (2012) Regional climate downscaling: What’s the point? Eos. Transactions American Geophysical Union 93(5):52. doi:10.1029/2012EO050008

    Article  Google Scholar 

  • Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts JTM (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letter 38:L05,503. doi:10.1029/2011GL046583

    Google Scholar 

  • Scarchilli C, Frezzotti M, Grigioni P, De Silvestri L, Agnoletto L, Dolci S (2010) Extraordinary blowing snow transport events in East Antarctica. Climate Dynamics 34(7):1195–1206. doi:10.1007/s00382-009-0601-0

    Article  Google Scholar 

  • Sinclair MR (1994) A Diagnostic Model for Estimating Orographic Precipitation. Journal of Applied Meteorology 33:1163–1175

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93. doi:10.1175/BAMS-D-11-00094.1

  • Thompson SL, Pollard D (1997) Greenland and Antarctic mass balances for present and doubled atmospheric CO2 from the GENESIS version-2 global climate model. Journal of Climate 10:871–900. doi:10.1175/1520-0442(1997)010<0871:GAAMBF>2.0.CO;2

    Article  Google Scholar 

  • Turner J, Lachlan-Cope T, Marshall G, Morris E, Mulvaney R, Winter W (2002) Spatial variability of Antarctic peninsula net surface mass balance. Journal of Geophysical Research 107(4173):10–1029. doi:10.1029/2001JD000755

    Google Scholar 

  • Uotila P, Lynch AH, Cassano Cullather RI (2007) Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios. Journal of Geophysical Research 112(D10):D10107. doi:10.1029/2006JD007482

  • Uppala S, Kallberg P, Simmons A, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg WJ, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society 131(612):2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Vaughan DG, Bamber JL, Giovinetto M, Russell J, Cooper APR (1999) Reassessment of net surface mass balance in Antarctica. Journal of Climate 12(4):933–946. doi:10.1175/1520-0442(1999)012<0933:RONSMB>2.0.CO;2

    Article  Google Scholar 

  • Whillans I, Bindschadler R (1988) Mass balance of ice stream B, West Antarctica. Ann Glaciol 11(1):87–193

    Google Scholar 

  • Wild M, Calanca P, Scherrer S, Ohmura A (2003) Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios. Journal of Geophysical Research 108(D5):4165. doi:10.1029/2002JD002451

    Article  Google Scholar 

  • Shepherd A et al (2012) A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183–1189. doi:10.1126/science.1228102

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the ice2sea project, funded by the European Commission’s 7th Framework Programme through grant number 226375, ice2sea manuscript number 090. Field data were made available by the French glaciological observatory GLACIOCLIM-SAMBA (IPEV program number 411). SMHiL simulations were run on CIMENT computers (Université de Grenoble, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Agosta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agosta, C., Favier, V., Krinner, G. et al. High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Clim Dyn 41, 3247–3260 (2013). https://doi.org/10.1007/s00382-013-1903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1903-9

Keywords

Navigation