Skip to main content

Advertisement

Log in

Impact of prescribed Arctic sea ice thickness in simulations of the present and future climate

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper describes atmospheric general circulation model climate change experiments in which the Arctic sea-ice thickness is either fixed to 3 m or somewhat more realistically parameterized in order to take into account essentially the spatial variability of Arctic sea-ice thickness, which is, to a first approximation, a function of ice type (perennial or seasonal). It is shown that, both at present and at the end of the twenty-first century (under the SRES-A1B greenhouse gas scenario), the impact of a variable sea-ice thickness compared to a uniform value is essentially limited to the cold seasons and the lower troposphere. However, because first-year ice is scarce in the Central Arctic today, but not under SRES-A1B conditions at the end of the twenty-first century, and because the impact of a sea-ice thickness reduction can be masked by changes of the open water fraction, the spatial and temporal patterns of the effect of sea-ice thinning on the atmosphere differ between the two periods considered. As a consequence, not only the climate simulated at a given period, but also the simulated Arctic climate change over the twenty-first century is affected by the way sea-ice thickness is prescribed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905. doi:10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2

    Article  Google Scholar 

  • Arzel O, Fichefet T, Goosse H (2006) Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Model 12:401–415. doi:10.1016/j.ocemod2005.08.002

    Article  Google Scholar 

  • Chalita S, Le Treut H (1994) The albedo of temperate and boreal forest and the Northern Hemisphere climate: a sensitivity experiment using the LMD GCM. Clim Dyn 10:231–240. doi:10.1007/BF00208990

    Article  Google Scholar 

  • Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. Science Report 96-4, Dan Meteorol Inst, Copenhagen, 51 pp

  • Comiso JC, Parkinson CL, Gersten R, Stok L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi:10.1029/2007GL031972

    Article  Google Scholar 

  • Dethloff K, Rinke A, Lehmann R, Christensen JH, Botzet M, Machenhauer B (1996) A regional climate model of the Arctic atmosphere. J Geophys Res 101:23401–23422. doi:10.1029/96JD02016

    Google Scholar 

  • Dethloff K, Rinke A, Benkel A, Køltzow M, Sokolova E, Kumar Saha S, Handorf D, Dorn W, Rockel B, Von Storch H, Haugen JE, Røed LP, Roeckner E, Christensen JH, Stendel M (2006) A dynamical link between the Arctic and the global climate system. Geophys Res Lett 33:L03703. doi:10.1029/2005GL025245

    Article  Google Scholar 

  • Dorn W, Dethloff K, Rinke A, Kurgansky M (2008) The recent decline of the Arctic summer sea-ice cover in the context of internal climate variability. Open Atmos Sci J 2:91–100. doi:10.2174/1874282300802010091

    Article  Google Scholar 

  • Fetterer F, Untersteiner N (1998) Observations of melt ponds on Arctic sea ice. J Geophys Res 103:24821–24835. doi:10.1029/98JC02034

    Article  Google Scholar 

  • Flato GM, Hibler WD (1995) 1995: Ridging and strength in modeling the thickness distribution of Arctic sea ice. J Geophys Res 100:18611–18626. doi:10.1029/95JC02091

    Article  Google Scholar 

  • Gerdes R (2008) Atmospheric response to changes in Arctic sea ice thickness. Geophys Res Lett 33:L18709. doi:10.1029/2006GL027146

    Article  Google Scholar 

  • Giles KA, Laxon SW, Ridout AL (2008) Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophys Res Lett 35:L22502. doi:10.1029/2008GL035710

    Article  Google Scholar 

  • Gorodetskaya IV, Tremblay B (2008) Arctic cloud properties and radiative forcing from observations and their role in sea ice decline predicted by the NCAR CCSM3 model during the 21st century. In: DeWeaver E, Bitz CM, Tremblay B (eds) Arctic sea ice decline: observations, projections, mechanisms, and implications. Geophys Monogr Ser, AGU, Washington, vol 180, pp 213–268

  • Hall A (2004) The role of surface albedo feedback in climate. J Clim 17:1550–1568. doi:10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2

    Article  Google Scholar 

  • Harms IH, Schrum C, Hatten K (2005) Numerical sensitivity studies on the variability of climate-relevant processes in the Barents Sea. J Geophys Res 110:C06002. doi:10.1029/2004JC002559

    Article  Google Scholar 

  • Holland MM, Bitz CM, Tremblay B (2008) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33:L33503. doi:10.1029/2006GL028024

    Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, LeVan P, Li Z-X, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. doi:10.1007/s00382-006-0158-0

    Article  Google Scholar 

  • Huwald H, Tremblay L-B, Blatter H (2005) Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes. J Geophys Res 110:C05009. doi:10.1029/2003JC002221

    Article  Google Scholar 

  • Køltzow M (2007) The effect of a new snow and sea ice albedo scheme on regional climate model simulations. J Geophys Res 112:D07110. doi:10.1029/2006JD007693

    Article  Google Scholar 

  • Krinner G, Genthon C, Li ZX, Le Van P (1997) Studies of the Antarctic climate with a stretched grid GCM. J Geophys Res 102:13731–13745. doi:10.1029/96JD03356

    Article  Google Scholar 

  • Krinner G, Mangerud J, Jakobsson M, Crucifix M, Ritz C, Svendsen JI (2004) Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature 427:429–432. doi:10.1038/nature02233

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19:GB1015. doi:10.1029/2003GB002199

    Article  Google Scholar 

  • Krinner G, Boucher O, Balkanski Y (2006) Ice-free glacial northern Asia due to dust deposition on snow. Clim Dyn 27:613–625. doi:10.1007/s00382-006-0159-z

    Article  Google Scholar 

  • Krinner G, Magand O, Simmonds I, Genthon C, Dufresne J-L (2007) Simulated Antarctic precipitation and surface mass balance at the end of the 20th and 21st centuries. Clim Dyn 28:215–230. doi:10.1007/s00382-006-0177-x

    Article  Google Scholar 

  • Krinner G, Guicherd B, Ox K, Genthon C, Magand O (2008) Influence of oceanic boundary conditions in simulations of Antarctic climate and surface mass balance change during the coming century. J Clim 21:938–962. doi:10.1175/2007JCLI1690.1

    Article  Google Scholar 

  • Kwok R (2007) Near zero replenishment of the Arctic multiyear sea ice cover at the end of 2005 summer. Geophys Res Lett 34:L05501. doi:10.1029/2006GL028737

    Article  Google Scholar 

  • Laxon S, Peacock N, Smith S (2003) High interannual variability of sea ice thickness in the Arctic region. Nature 425:947–950. doi:10.1038/nature02050

    Google Scholar 

  • Liu Y, Key JR (2003) Detection and analysis of clear-sky, low-level atmospheric temperature inversions with MODIS. J Atmos Ocean Technol 20:1727–1737. doi:10.1175/1520-0426(2003)020<1727:DAAOCL>2.0.CO;2

    Article  Google Scholar 

  • Liu Y, Key JR, Schweiger A, Francis J (2006) Characteristics of satellite-derived clear-sky atmospheric temperature inversion strength in the Arctic, 1980–1996. J Clim 19:4902–4913. doi:10.1175/JCLI3915.1

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J Geophys Res 85:5529–5554. doi:10.1029/JC085iC10p05529

    Article  Google Scholar 

  • Marsland SJ, Haak H, Jungclaus JH, Latif M, Roske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127. doi:10.1016/S1463-5003(02)00015-X

    Article  Google Scholar 

  • Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett 34:L24501. doi:10.1029/2007GL032043

    Article  Google Scholar 

  • Maykut GA, McPhee MG (1995) 1995: Solar heating of the Arctic mixed layer. J Geophys Res 100:24691–24703. doi:10.1029/95JC02554

    Article  Google Scholar 

  • Meehl GA, Washington WM, Santer BD, Collins WD, Arblaster JM, Hu A, Lawrence DM, Teng H, Buja LE, Strand WG (2006) Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J Clim 19:2597–2616. doi:10.1175/JCLI3746.1

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset. Bull Am Metab Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Murray R, Simmonds I (1991) A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme. Aust Metab Mag 39:167–180

    Google Scholar 

  • Murray R, Simmonds I (1995) Responses of climate and cyclones to reduction in Arctic winter sea ice: leads and polynyas. J Geophys Res 100:4791–4806. doi:10.1029/94JC02206

    Article  Google Scholar 

  • Nakicenovic N et al (2000) IPCC special report on emissions scenarios. Cambridge University Press, London, p 599

    Google Scholar 

  • Nicholls N (2001) The insignificance of significance testing. Bull Am Metab Soc 82:981–986. doi:10.1175/1520-0477(2001)082<0981:CAATIO>2.3.CO;2

    Article  Google Scholar 

  • Perovich DK, Elder B (2002) Estimates of ocean heat flux at SHEBA. Geophys Res Lett 29:1344. doi:10.1029/2001GL014171

    Article  Google Scholar 

  • Perovich DK, Grenfell TC, Light B, Hobbs PV (2002) Seasonal evolution of the albedo of multiyear Arctic sea ice. J Geophys Res 107:C8044. doi:10.1029/2000JC000438

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rinke A, Maslowski W, Dethloff K, Clement J (2006) Influence of sea ice on the atmosphere: a study with an Arctic atmospheric regional climate model. J Geophys Res 111:D16103. doi:10.1029/2005JD006957

    Article  Google Scholar 

  • Robock A (1983) Ice and snow feedbacks and the latitudinal and seasonal distribution of climate sensitivity. J Atmos Sci 40:986–997. doi:10.1175/1520-0469(1983)040<0986:IASFAT>2.0.CO;2

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part 1: model description. Max-Planck-Institut für Meteorologie, Report No. 349, Hamburg. http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf

  • Rothrock DA, Percival DB, Wensnahan M (2008) The decline in arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data. J Geophys Res 113:C05003. doi:10.1029/2007JC004252

    Article  Google Scholar 

  • Schäfer-Neth C, Paul A (2003) Gridded global LGM SST and salinity reconstruction. IGBP PAGES/World Data Center for Paleoclimatology, Boulder Data Contribution Series #2003-046. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA

  • Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536. doi:10.1126/science.1139426

    Article  Google Scholar 

  • Shirasawa K, Ingram RG, Hudier EJ-J (1997) Oceanic heat fluxes under thin sea ice in Saroma-ko Lagoon, Hokkaido, Japan. J Mar Syst 11:9–19. doi:10.1016/S0924-7963(96)00023-1

    Article  Google Scholar 

  • Simmonds I, Keay K (2000) Mean Southern hemisphere extratropical cyclone behaviour in the 40-year NCEP-NCAR analysis. J Clim 13:873–885. doi:10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2

    Article  Google Scholar 

  • Simmonds I, Murray RJ (1999) Southern extratropical cyclone behaviour in ECMWF analyses during the FROST special observing periods. Weather Forecast 14:878–891. doi:10.1175/1520-0434(1999)014<0878:SECBIE>2.0.CO;2

    Article  Google Scholar 

  • Taylor K, Stouffer R (2008) A summary of experiments proposed for CMIP5. Presentation at the 12th session of the JSC/CLIVAR working group on coupled modelling, Paris, September 2008. http://www.clivar.org/organization/wgcm/wgcm-12/wgcm12.php#reports

  • UK Meteorological Office Hadley Centre (2008) HadISST 1.1—global sea-ice coverage and SST (1870-Present). British Atmospheric Data Centre. Digital media available from http://badc.nerc.ac.uk/data/hadisst/

  • Worby AP, Geiger CA, Paget MJ, van Woert ML, Ackley SF, DeLiberty LL (2008) Thickness distribution of Antarctic sea ice. J Geophys Res 113:C05S92. doi:10.1029/2007JC004254

    Article  Google Scholar 

  • Zhang X, Walsh JE (2006) Toward a seasonally ice-covered Arctic ocean: scenarios from the IPCC AR4 model simulations. J Clim 19:730–1747. doi:10.1175/JCLI3767.1

    Google Scholar 

  • Zhang X, Sorteberg A, Zhang J, Gerdes R, Comiso JC (2008) Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys Res Lett 35:L22701. doi:10.1029/2008GL035607

    Article  Google Scholar 

Download references

Acknowledgments

Support by the Alexander-von-Humboldt-Stiftung and CNRS for Gerhard Krinner’s research stay at AWI Potsdam is gratefully acknowledged. This work is a contribution to the LEFE (EVE/IDAO) project “CHARMANT”. We used computer ressources at IDRIS/CNRS, AWI and the Mirage platform (UJF Grenoble). We thank the two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Krinner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krinner, G., Rinke, A., Dethloff, K. et al. Impact of prescribed Arctic sea ice thickness in simulations of the present and future climate. Clim Dyn 35, 619–633 (2010). https://doi.org/10.1007/s00382-009-0587-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0587-7

Keywords

Navigation