Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Interglacial diversity

Abstract

Earth's climate has progressively cooled over the past 3 million years with a concomitant expansion of continental ice volume. This global trend towards increasingly severe and extended ice ages has nevertheless been repeatedly interrupted by relatively mild/warm interglacial intervals such as the one that has characterized the past 11,000 years. Past interglacials can be thought of as a series of natural experiments in which climate boundary conditions varied considerably, with consequent effects on the character of climate change. As such they can provide a more complete view of the range and underlying physics of natural climate variability. Examination of the palaeoclimate record of the past 800,000 years reveals a large diversity among interglacials in terms of their intensity, duration and internal variability, but a general theory accounting for this diversity remains elusive. Future work should focus on generating new palaeodata and modelling interglacial diversity, and using this information to inform projections on the future evolution of the current interglacial.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palaeoclimate parameters of the past 800 kyr.
Figure 2: Characterizing interglacials on the basis of combined changes in δ18Obenthic and CO2.

Similar content being viewed by others

References

  1. Deevey, E. S. Coaxing history to conduct experiments. BioScience 19, 40–43 (1969).

    Article  Google Scholar 

  2. Shackleton, N. J. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 6, 183–190 (1987).

    Article  Google Scholar 

  3. Tzedakis, P. C. et al. Establishing a terrestrial chronological framework as a basis for biostratigraphical comparisons. Quat. Sci. Rev 20, 1583–1592 (2001).

    Article  Google Scholar 

  4. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Article  Google Scholar 

  5. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    Article  Google Scholar 

  6. Loulergue. L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008).

    Article  Google Scholar 

  7. Fairbridge, R. Chronology of a glacial cycle. Quat. Res. 2, 283–302 (1972).

    Article  Google Scholar 

  8. Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).

    Article  Google Scholar 

  9. Shackleton, N. J. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215, 15–17 (1967).

    Article  Google Scholar 

  10. Chappell, J. & Shackleton, N. J. Oxygen isotopes and sea-level. Nature 324, 137–140 (1986).

    Article  Google Scholar 

  11. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  12. McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).

    Article  Google Scholar 

  13. Shackleton, N. J. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide and orbital eccentricity. Science 289, 1897–1902 (2000).

    Article  Google Scholar 

  14. Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

    Article  Google Scholar 

  15. Bintanja, R. & van de Wal, R. S. W. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 454, 869–872 (2008).

    Article  Google Scholar 

  16. Prokopenko, A. A. et al. Muted climate variations in continental Siberia during the mid-Pleistocene epoch. Nature 418, 65–68 (2002).

    Article  Google Scholar 

  17. Tzedakis, P. C., Hooghiemstra, H. & Pälike, H. The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quat. Sci. Rev. 25, 3416–3430 (2006).

    Article  Google Scholar 

  18. Yin, Q. & Guo, Z. T. Strong summer monsoon during the cool MIS-13. Clim. Past 4, 29–34 (2008).

    Article  Google Scholar 

  19. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  Google Scholar 

  20. Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. F. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 296, 522–525 (2009).

    Google Scholar 

  21. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth's orbit: Pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    Article  Google Scholar 

  22. Parrenin, F. & Paillard, D. Amplitude and phase of glacial cycles from a conceptual model. Earth Planet. Sci. Lett. 214, 243–250 (2003).

    Article  Google Scholar 

  23. Loutre, M. F. & Berger, A. Future climatic changes: are we entering an exceptionally long interglacial? Clim. Change 46, 61–90 (2000).

    Article  Google Scholar 

  24. Loutre, M. F. & Berger, A. Marine isotope stage 11 as an analogue for the present interglacial. Glob. Planet. Change 36, 209–217 (2003).

    Article  Google Scholar 

  25. Shackleton, N. J. The last interglacial in the marine and terrestrial records. Proc. R. Soc. London B 174, 135–154 (1969).

    Article  Google Scholar 

  26. Berger, A. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978).

    Article  Google Scholar 

  27. Masson-Delmotte, V. et al. Past temperature reconstructions from deep ice-cores: relevance for future climate change. Clim. Past 2, 145–165 (2006).

    Article  Google Scholar 

  28. Tzedakis, P. C., Roucoux, K. H., de Abreu, L. & Shackleton, N. J. The duration of forest stages in southern Europe and interglacial climate variability. Science 306, 2231–2235 (2004).

    Article  Google Scholar 

  29. McManus, J. F., Oppo, D. W., Keigwin, L. D., Cullen, J. L. & Bond, G. C. Thermohaline circulation and prolonged interglacial warmth in the North Atlantic. Quat. Res. 58, 17–21 (2002).

    Article  Google Scholar 

  30. Dickson, A. J. et al. Oceanic forcing of the Marine Isotope Stage 11 interglacial. Nature Geosci. 2, 428–433 (2009).

    Article  Google Scholar 

  31. CAPE–Last Interglacial Project Members. Last interglacial Arctic warmth confirms polar amplification of climate change. Quat. Sci. Rev. 25, 1383–1400 (2006).

  32. Thompson, W. G. & Goldstein, S. L. A radiometric calibration of the SPECMAP timescale. Quat. Sci. Rev. 25, 3207–3215 (2006).

    Article  Google Scholar 

  33. Rohling, E. J. et al. High rates of sea-level rise during the last interglacial period. Nature Geosci. 1, 38–42 (2008).

    Article  Google Scholar 

  34. Otto-Bliesner, B. L. et al. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1747 (2006).

    Article  Google Scholar 

  35. Fronval, T. & Jansen, E. Rapid changes in ocean circulation in the Nordic Seas during the last interglacial period. Nature 383, 806–810 (1996).

    Article  Google Scholar 

  36. Oppo, D. W., McManus, J. F. & Cullen, J. L. Evolution and demise of the last interglacial warmth in the subpolar North Atlantic. Quat. Sci. Rev. 25, 3268–3277 (2006).

    Article  Google Scholar 

  37. Rousseau, D. D. et al. Reconstruction of the Grande Pile Eemian using inverse modeling of biomes and δ13C. Quat. Sci. Rev. 25, 2806–2819 (2006).

    Article  Google Scholar 

  38. Drysdale, R. N., Zanchetta, G., Hellstrom, J. C., Fallick, A. E. & Zha, J. Stalagmite evidence for the onset of the last interglacial in southern Europe at 129±1 ka. Geophys. Res. Lett. 32, L24708 (2005).

    Article  Google Scholar 

  39. Alley, R. B. et al. Holocene climatic instability: A prominent, widespread event 8,200 yr ago. Geology 25, 483–486 (1997).

    Article  Google Scholar 

  40. Kleiven, H.F. et al., Reduced North Atlantic deep water coeval with the glacial Lake Agassiz freshwater outburst. Science 319, 60–64 (2007).

    Article  Google Scholar 

  41. Praetorius, S. K., McManus, J. F., Oppo, D. W. & Curry, W. B. Episodic reductions in bottom water currents since the last ice age. Nature Geosci. 1, 449–452 (2008).

    Article  Google Scholar 

  42. Renssen, H., Goosse, H., Fichefet, T. & Campin, J.-M. The 8. 2 kyr BP event simulated by a global atmosphere-sea-ice-ocean model. Geophys. Res. Lett. 28, 1567–1570 (2001).

    Article  Google Scholar 

  43. Indermühle, A. et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121–126 (1999).

    Article  Google Scholar 

  44. Ruddiman, W. F. The anthropogenic greenhouse era began thousands of years ago. Clim. Change 61, 261–293 (2003).

    Article  Google Scholar 

  45. Olofsson, J. & Hickler, T. Effects of human land-use on the global carbon cycle during the last 6,000 years. Veget. Hist. Archaeobot. 17, 605–615 (2008).

    Article  Google Scholar 

  46. Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric p CO2 . Quat. Sci. Rev. 25, 3150–3184 (2006).

    Article  Google Scholar 

  47. Bender, M. Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth Planet. Sci. Lett. 204, 275–289 (2002).

    Article  Google Scholar 

  48. Kawamura, K. et al. Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007).

    Article  Google Scholar 

  49. Raynaud, D. et al. The local insolation signature of air content in Antarctic ice: a new step toward an absolute dating of ice records. Earth Planet. Sci. Lett. 261, 337–349 (2007).

    Article  Google Scholar 

  50. Wang, Y. et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 1090–1093 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Past Global Changes (PAGES) for its support of the project on Past Interglacials (PIGS) and to participants of the first PIGS workshop at Bernin for stimulating discussions that contributed to this article. A.B. acknowledges support from the Advanced Research Grant EMIS of the European Research Council, V.B. from the Priority Core Program 1266 (INTERDYNAMIK) of the German Research Foundation (DFG), J.F.M. from the US-NSF, WHOI Morss Colloquium Fund, and Comer Science and Education Foundation, D.R. from the EU EPICA-MIS project (FP6) and Rice University (Department of Earth Sciences) and P.C.T. from NERC QUEST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Raynaud.

Supplementary information

Supplementary Information

Supplementary Information (PDF 266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzedakis, P., Raynaud, D., McManus, J. et al. Interglacial diversity. Nature Geosci 2, 751–755 (2009). https://doi.org/10.1038/ngeo660

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo660

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing