Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-term climatic changes indicated by crystal growth in polar ice

Abstract

The reconstruction of palaeotemperatures from polar ice samples is essentially based on the isotopic composition of the ice. In this paper we propose a new and independent way to obtain such data by using crystal-size-change profiles. From central Antarctica Dome C and Vostok ice cores data we suggest that crystal growth rate is mainly driven by a built-in 'memory9 of the surface temperature conditions at the time of deposition. A semi-empirical model of crystal grain growth is proposed, leading to Last Glacial Maximum–Holocene temperature change estimates in good agreement with isotope interpretations. However, the possible palaeocli-matic application of this model suffers some limitations connected in particular with in situ strain conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gow, A. J. & Williamson, T. Geol. Soc. Am. Bull., 87, 1665–1677 (1976).

    Article  ADS  Google Scholar 

  2. Herron, S. L., Langway, C. C. Jr & Brugger, K. A. Am. geophys. Un. Geophys. Monogr. 33, 23–31 (1985).

    Google Scholar 

  3. Koerner, R. M. & Fisher, D. J. Glaciol. 89, 209–222 (1979).

    Article  Google Scholar 

  4. Korotkevich, E. S., Barkov, N. I., Gordienko, F. G. & Kotlyakov, V. N. Bull Sov. Ant. Exp. 97, 135 (1977).

    Google Scholar 

  5. Barkov, N. I. & Lipenkov, V. Y. Acad. Sci. Sov. Geophys. Comm. 52, 178–186 (1985).

    Google Scholar 

  6. Duval, P. & Lorius, C. Earth planet. Sci. Lett. 48, 59–64, (1980).

    Article  ADS  Google Scholar 

  7. Lorius, C., Merlivat, L., Jouzel, J. & Pourchet, M. Nature 280, 644–648 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Gow, A. J. J. Glaciol. 8, 241–252 (1969).

    Article  ADS  CAS  Google Scholar 

  9. Gow, A. J. IAHS Publ. 114, 25–40 (1975).

    Google Scholar 

  10. Lorius, C. et al. Nature 316, 591–596 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Herron, S. L. & Langway, C. C. Jr Ann. Glaciol. 3, 118–124 (1982).

    Article  ADS  Google Scholar 

  12. Reeh, N., Johnsen, S. J. & Dahl-Jensen, D. Am. geophys. Un. Geophys. Monogr. 33, 57–65 (1985).

    Google Scholar 

  13. Lorius, C., Raynaud, D., Petit, J. R., Jouzel, J. & Merlivat, L. Ann. Glaciol. 5, 88–94 (1984).

    Article  ADS  Google Scholar 

  14. Duval, P. & Lliboutry, L. J. glaciol. 31, 107, 60–62 (1985).

    Article  Google Scholar 

  15. Duval, P. & Le Gac, H. Ann. Glaciol., 3, 92–95 (1982).

    Article  ADS  Google Scholar 

  16. Cragin, J. H., Herron, M. M., Langway, C. C. Jr & Klouda, G. in Polar Ocean (ed. Dunbar, M. J.). 617–631 (Arctic Institute of North America, Calgary, 1977).

    Google Scholar 

  17. Petit, J. R., Briat, M., & Royer, A. Nature 293, 391–394 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Palais, J. & Legrand, M. J. geophys. Res. 90, 1143–1154 (1985).

    Article  ADS  CAS  Google Scholar 

  19. De Angelis, M., Legrand, M., Petit, J. R., Barkov, N. I. & Korotkevich, Ye. S. J. atmos. Chem. 1, 215–239 (1984).

    Article  CAS  Google Scholar 

  20. Legrand, M. & Delmas, R. J. Ann. Glaciol. 7, 20–25 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Finkel, R. C. & Langway, C. C. Jr Earth planet. Sci. Lett. 73, 196–206 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Legrand, M., thesis, Université Scientifique Technologique et Medicale de Grenoble (1985).

  23. Legrand, M. & Delmas, R. J. Proc. NSF/NATO Conf., Biviers 1985 (in the press).

  24. Lorius, C. & Merlivat, L. IAHS Publ. 118, 127–137 (1977).

    CAS  Google Scholar 

  25. Jouzel, J. & Merlivat, L. J. geophys. Res. 89, 11749–11758 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Anderson, O. L. & Benson, C. S. in Ice and Snow (ed. Kingery) 391–411 (MIT Press, Boston, 1963).

    Google Scholar 

  27. Nishimura, H., Maeno, N. & Satow, K. Mem. natn. Inst. polar Res. Spec. Issue 29, 149–158 (1983).

    Google Scholar 

  28. Vassoille, R. et al. Ann. Geophys. 36, 491–498 (1980).

    Google Scholar 

  29. Maeno, N., Mem. natn. Inst. polar Res. Spec. Issue 24, 204–211 (1982).

    Google Scholar 

  30. Higashi, A., Fukuda, A., Hondoh, T., Goto, K. & Amakai, S. in Dislocations in Solids, 511–515 (Yamada Science Foundation, University of Tokyo Press) 1983.

    Google Scholar 

  31. Paterson, W. S. B. The Physics of Glaciers (Pergamon, New York, 1981).

    Google Scholar 

  32. Goto, K., Hondoh, T. & Higashi A. J. appl. Phys. 25, 351–357 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, J., Duval, P. & Lorius, C. Long-term climatic changes indicated by crystal growth in polar ice. Nature 326, 62–64 (1987). https://doi.org/10.1038/326062a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/326062a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing