Skip to main content
Log in

Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

16S rRNA gene (rrs) clone libraries were constructed from two snow samples (May 11, 2007 and June 7, 2007) and two meltwater samples collected during the spring of 2007 in Svalbard, Norway (79°N). The libraries covered 19 different microbial classes, including Betaproteobacteria (21.3%), Sphingobacteria (16.4%), Flavobacteria (9.0%), Acidobacteria (7.7%) and Alphaproteobacteria (6.5%). Significant differences were detected between the two sets of sample libraries. First, the meltwater libraries had the highest community richness (Chao1: 103.2 and 152.2) and Shannon biodiversity indices (between 3.38 and 3.59), when compared with the snow libraries (Chao1: 14.8 and 59.7; Shannon index: 1.93 and 3.01). Second, ∫-LIBSHUFF analyses determined that the bacterial communities in the snow libraries were significantly different from those of the meltwater libraries. Despite these differences, our data also support the theory that a common core group of microbial populations exist within a variety of cryohabitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amato P et al (2007) Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol Ecol 59:255–264

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Poulain AJ (2007) Mercury (micro) biogeochemistry in polar environments. FEMS Microbiol Ecol 59:232–241

    Article  CAS  PubMed  Google Scholar 

  • Brinkmeyer R, Knittel K, Jurgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619

    Article  CAS  PubMed  Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517

    Article  CAS  PubMed  Google Scholar 

  • Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Chauhan S, Shivaji S (1994) Growth and pigmentation in Sphingobacterium antarcticus, a psychotropic bacterium from Antarctica. Polar Biol 14:31–36

    Article  Google Scholar 

  • Cheng SM, Foght JM (2007) Cultivation-independent and -dependent characterization of Bacteria resident beneath John Evans Glacier. FEMS Microbiol Ecol 59:318–330

    Article  CAS  PubMed  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov VS, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485

    Article  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577

    Article  CAS  PubMed  Google Scholar 

  • Cole JR et al (2003) The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  CAS  PubMed  Google Scholar 

  • Cole JR et al (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:Database Issue D141–D145. doi:110.1093/nar/gkn1879

  • David MM, Mesle M, Malandain C, Cohen D, Vogel TM (2009) Molecular biology-based strategy for site remediation. Env Sci Technol (submitted)

  • Good IL (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Google Scholar 

  • Hodson A et al (2008) Glacial ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Hoham RW (1975) Optimal temperatures and temperature ranges for growth of snow algae. Arct Alp Res 7:13–24

    Article  Google Scholar 

  • Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice with emphasis on snow algae. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, pp 168–228

    Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67:4399–4406

    Article  CAS  PubMed  Google Scholar 

  • Jones HG (1999) The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold. Hydrol Process 13:2135–2147

    Article  Google Scholar 

  • Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. Isme J 3:442–453

    Article  CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Google Scholar 

  • Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47:161–177

    Article  CAS  PubMed  Google Scholar 

  • Kuhn M (2001) The nutrient cycle through snow and ice, a review. Aquat Sci 63:150–167

    Article  CAS  Google Scholar 

  • Liu Y, Yao T, Jiao N, Kang S, Zeng Y, Huang S (2006) Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. FEMS Microbiol Lett 265:98–105

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2009) Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles 13:411–423

    Article  CAS  PubMed  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Google Scholar 

  • Miteva V (2007) Bacteria in snow and glacier ice. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 31–50

    Google Scholar 

  • Miwa T (1975) Clostridia in soil of the Antarctica. Jpn J Med Sci Biol 28:201–213

    CAS  PubMed  Google Scholar 

  • Perrière G, Gouy M (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

  • Pettitt AN (1982) Cramér-von Mises statistic. In: Kotz S, Johnson NL, Read CB (eds) Encyclopedia of statistical sciences. Wiley, New York, pp 220–221

    Google Scholar 

  • Poulain AJ et al (2007) Potential for mercury reduction by microbes in the high arctic. Appl Environ Microbiol 73:2230–2238

    Article  CAS  PubMed  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. American Society for Microbiology, Washington, pp 130–145

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    Article  CAS  PubMed  Google Scholar 

  • Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol 71:123–130

    Article  CAS  PubMed  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  CAS  PubMed  Google Scholar 

  • Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71:6986–6997

    Article  CAS  PubMed  Google Scholar 

  • Spring S, Merkhoffer B, Weiss N, Kroppenstedt RM, Hippe H, Stackebrandt E (2003) Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: description of Clostridium frigoris sp. nov., Clostridium lacusfryxellense sp. nov., Clostridium bowmanii sp. nov. and Clostridium psychrophilum sp. nov. and reclassification of Clostridium laramiense as Clostridium estertheticum subsp. laramiense subsp. nov. Int J Syst Evol Microbiol 53:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Brambilla E, Cousin S, Dirks W, Pukall R (2004) Culture-independent analysis of bacterial species from an anaerobic mat from Lake Fryxell, Antarctica: prokaryotic diversity revisited. Cell Mol Biol (Noisy-le-grand) 50:517–524

    CAS  Google Scholar 

  • Stibal M, Elster J, Sabacka M, Kastovska K (2007) Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol 59:265–273

    Article  CAS  PubMed  Google Scholar 

  • Thomas WH, Duval B (1995) Sierra Nevada, California, USA, snow algae: snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arct Alp Res 27:389–399

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tranter M, Sharp MJ, Lamb HR, Brown GH, Hubbard BP, Willis IC (2002) Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland—a new model. Hydrol Process 16:959–993

    Article  Google Scholar 

  • Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65

    Article  CAS  PubMed  Google Scholar 

  • Yao TD, Xiang SR, Zhang XJ, Wang NL, Wang YQ (2006) Microorganisms in the Malan ice core and their relation to climatic and environmental changes. Global Biogeochem Cycles 20:GB1004. doi:1010.1029/2004GB002424

Download references

Acknowledgments

The authors would like to thank the three anonymous reviewers that went over the manuscript. The authors would like to acknowledge the contribution of Cédric Couret and the entire AWIPEV staff, Xavier Faïn and Jean Philippe Balestrieri. This research was supported by grants from EC2CO/CYTRIX (Programme National INSU), LEFE, IPEV CHIMERPOL program (399) and CL would like to acknowledge the FQRNT (le Fonds Québécois de la Recherche sur la Nature et les Technologies) for a PhD research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Larose.

Additional information

Communicated by T. Matsunaga.

D. Schneider and T. M. Vogel contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larose, C., Berger, S., Ferrari, C. et al. Microbial sequences retrieved from environmental samples from seasonal Arctic snow and meltwater from Svalbard, Norway. Extremophiles 14, 205–212 (2010). https://doi.org/10.1007/s00792-009-0299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0299-2

Keywords

Navigation