Skip to main content

Advertisement

Log in

Role of soil freezing in future boreal climate change

  • Original Articles
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We introduced a simple scheme of soil freezing in the LMDz3.3 atmospheric general circulation model (AGCM) to examine the potential effects of this parameterization on simulated future boreal climate change. In this multi-layer soil scheme, soil heat capacity and conductivity are dependent on soil water content, and a parameterization of the thermal and hydrological effects of water phase changes is included. The impact of these new features is evaluated against observations. By comparing present-day and 2×CO2 AGCM simulations both with and without the parameterization of soil freezing the role of soil freezing in climate change is analysed. Soil freezing does not have significant global impacts, but regional effects on simulated climate and climate change are important. In present-day conditions, hydrological effects due to freezing lead to dryer summers. In 2×CO2 climate, thermal effects due to freeze/thaw cycles are more pronounced and contribute to enhance the expected future overall winter warming. Impact of soil freezing on climate sensitivity is not uniform: the annual mean warming is amplified in North America (+15%) and Central Siberia (+36%) whereas it is reduced in Eastern Siberia (−23%). Nevertheless, all boreal lands undergo a strong attenuation of the warming during summertime. In agreement with some previous studies, these results indicate once more that soil freezing effects are significant on regional boreal climate. But this study also demonstrates its importance on regional boreal climate change and thus the necessity to include soil freezing in regional climate change predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11a, b
Fig. 12
Fig. 13a, b
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Here, the forcing is due to changing atmospheric concentrations of CO2 and other well-mixed greenhouse gases.

References

  • Anisimov OA, Nelson FE (1997) Permafrost zonation and climate change in the Northern Hemisphere: results from transient general circulation models. Climatic Change 35:241–258

    Article  Google Scholar 

  • Anisimov OA, Shiklomanov NI, Nelson FE (1997) Global warming and active-layer thickness: results from transient general circulation models. Glob Planet Change 15:61–77

    Article  Google Scholar 

  • Anisimov O, Fitzharris B, Hagen JO, Marchant H, Nelson F, Prowse T, Vaughan DG (2001) Polar regions (Arctic and Antarctic). In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: impacts, adaptation and vulnerability contribution of working group I to the third assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Bonan G (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. NCAR Technical Note 417, NCAR, Boulder Co., USA

  • Bonfils C, de Noblet-Ducoudré N, Braconnot P, Joussaume S (2001) Hot desert albedo and climate change: mid-Holocene monsoon in north Africa. J Climate 14:3724–3737

    Article  Google Scholar 

  • Boone A, Masson V, Meyers T, Noilhan J (2000) The influence of the inclusion of soil freezing on simulations by a soil-vegetation-atmosphere transfer scheme. J Appl Meteor 39:1544–1569

    Article  Google Scholar 

  • Bowling L, Lettenmaier D, Graham P, Clark D, El Maayar M, Essery R, Goers S, Gusev Y, Habets F, Van den Hurk B, Jin J, Kahan D, Lohmann D, Ma X, Mahanama S, Mocko D, Nasonova O, Niu G, Samuelson P, Shmakin A, Takata K, Verseghy D, Viterbo P, Xia Y, Xue Y, Yang Z (2003) Simulation of high-latitude hydrological processes in the Torne Kalix basin: PILPS phase 2(e) 1: experiment description and summary intercomparisons. Global Planet Change 38:1–30. DOI 10.1016/S0921-8181(03)00003-1

    Article  Google Scholar 

  • Brown J, Haggerty C (1998) Permafrost digital databases now available. EOS Trans Am Geophys Union 79:634

    Google Scholar 

  • Cherkauer KA, Lettenmaier DP (1999) Hydrologic effects of frozen soils in the upper Mississippi river basin. J Geophys Res 104:19599–19610

    Article  Google Scholar 

  • Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of a new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203

    Article  Google Scholar 

  • Cubasch U, Hasselmann K, Hock H, Maier-Reimer E, Mikolajewicz U, Santer BD, Sausen R (1992) Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model. Clim Dyn 8:55–69

    Google Scholar 

  • Demchenko PF, Eliseev AV, Mokhov II (2001) Sensitivity of permafrost cover in the Northern Hemisphere to climate change. Clivar Exchanges 6:9–11

    Google Scholar 

  • Douville H, Royer JF (1996) Sensitivity of the Asian summer monsoon to an anomalous eurasian snow cover within the Météo-France GCM. Clim Dyn 12:449–466

    Article  Google Scholar 

  • Farouki OT (1981) The thermal properties of soils in cold regions. Cold Regions Sci Tech 5:67–75

    Article  Google Scholar 

  • Fox JD (1992) Incorporating freeze-thaw calculations into a water balance model. Water Resour Res 28:2229–2244

    Article  Google Scholar 

  • Fukuda M (1994) Methane flux from thawing siberian permafrost (ice complexes)-results from field observations. EOS Trans Am Geophys Union 75:86

    Google Scholar 

  • Gel’fan AN (1989) Comparison of two methods of calculating soil freezing depth. Sov Meteor Hydrol 2:78–83

    Google Scholar 

  • Goulden ML, Wofsy SC, Harden JW, Trumbore SE, Crill PM, Gower ST, Fries T, Daube BO, Fan SM, Sutton DJ, Bazzaz A, Munger JW (1998) Sensitivity of boreal carbon balance to soil thaw. Science 279:214–217

    Article  CAS  PubMed  Google Scholar 

  • Groisman PY, Karl TR, Knight RW (1994) Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 263:198–200

    Google Scholar 

  • Harzallah A, Sadourny R (1995) Internal versus SST-forced atmospheric variability as simulated by an atmospheric general circulation model. J Climate 8:474–495

    Article  Google Scholar 

  • Henderson-Sellers A, Yang ZL, Dickinson RE (1993) The project for intercomparison of land-surface parameterisation schemes. Bull Am Meteor Soc 74:1335–1349

    Article  Google Scholar 

  • Henderson-Sellers A, Pitman A, Love P, Irannejad P, Chen T (1995)) The project for intercomparison of land-surface parameterisation schemes (PILPS): phases 2 and 3. Bull Am Meteor Soc 76:489–503

    Article  Google Scholar 

  • International Permafrost Association Data Information Working Group (1998) In: National Snow and Ice Data Center (eds) digital data available from:nsidc@kryos.colorado.edu

  • Jin H, Li S, Cheng G (2000) Permafrost and climatic change in China. Glob Planet Change 26:387–404

    Article  Google Scholar 

  • Koren V, Schaake J, Mitchell K, Duan QY, Chen F, Baker JM (1999) A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J Geophys Res 104:19569–19586

    Article  Google Scholar 

  • Krinner G, Genthon C, Li Z-X, Le Van P (1997) Studies of the Antarctic climate with a stretched-grid general circulation model. J Geophys Res 102:13731–13745

    Article  Google Scholar 

  • Krinner G (2003) Impact of lakes and wetlands on boreal climate. J Geophys Res 108. DOI:10.1029/2002JD002597

    Article  Google Scholar 

  • Lammers RB, Shiklomanov AI (2000) R-arctinet, a regional hydrographic data network for the pan-arctic region. Published on CD National Snow and Ice Data Center

  • Legates DR, Willmott C (1990) Mean seasonal and spatial variability in gauge-corrected global precipitation. Int J Climatol 10:111–127

    Google Scholar 

  • Lunardini V (1988) Heat conduction with freezing or thawing. Technical Report 88-1, US Army Corps of Engineers

  • Luo L, Robock A, Vinnikov K, Schlosser A, Slater A et al (2003) Effects of frozen soil temperature, spring infiltration, and runoff: results from the PILPS 2(d) experiment at Valdai, Russia. J Hydrometeorol 4:334–351

    Article  Google Scholar 

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cyc 1:61–86

    CAS  Google Scholar 

  • May W, Roeckner E (2001) A time slice experiment with the ECHAM4 AGCM at high resolution: the impact of horizontal resolution on annual mean climate change. Clim Dyn 17:407–420

    Article  Google Scholar 

  • Meeson BW, Corprew FE, McManus JMP, Myers DM, Closs JW, Sun KJ, Sunday DJ, Sellers PJ (1995) ISLSCP Initiative 1-Global data sets for land atmosphere model: 1987–1988. Published on CD by NASA available from http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/ISLSCP/islscp_i1.html

  • Michaelson GJ, Ming CL, Kimble JM (1996) Carbon storage and distribution in tundra soils of Arctic Alaska USA. Arct Alp Res 28:414–424

    Google Scholar 

  • National Snow and Ice Data Center (1998) Northern Hemisphere weekly snow cover and sea ice extent. Digital data available from:nsidc@kryos.colorado.edu

    Google Scholar 

  • Nelson FE, Anisimov OA (1993) Permafrost zonation in Russia under anthropogenic climatic change. Permafrost Periglacial Process 4:137–148

    Google Scholar 

  • Prigent C, Matthews E, Aires P, Rossow W (2001) Remote sensing of global wetland dynamics with multiple satellite data sets. Geophys Res Lett 28:4631–4634

    Article  Google Scholar 

  • Renssen H, Isarin RFB, Vandenberghe J, Lautenschlager M, Schlese U (2000) Permafrost as a critical factor in paleoclimate modelling: the younger dryas case in Europe. Earth Planet Sci 176:1–5

    Article  CAS  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. MPI Report 218:90

    Google Scholar 

  • Roeckner E, Bengtsson L, Feichter J (1999) Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J Clim 12:3004–3032

    Article  Google Scholar 

  • Schlosser C, Robock A, Vinnikov K, Speranskaya A, Xue Y (1997) 18-year land-surface hydrology model simulations for a mid-latitude grassland catchment in Valdai, Russia. Monthly Weather Rev 125:3279–3296

    Article  Google Scholar 

  • Schlosser C, Slater AG, Robock A, Pitman AJ, Vinnikov KY, Henserson-Sellers A, Speranskaya NA, Mitchell K, Boone A, Braden H, Chen F, Cox P, de Rosnay P, Desborough CE, Dickinson RE, Dai YJ, Duan Q, Entin J, Etchevers P, Gedney N, Gusev YM, Habets F, Kim J, Koren V, Kowalczyk E, Nasonova ON, Noilhan J, Schaake J, Shmakin AB, Smirnova TG, Verseghy D, Wetzel P, Xue Y, Yang ZL (2000) Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(d). Monthly Weather Rev 128:301–321

    Article  Google Scholar 

  • Smirnova TG, Brown JM, Benjamin SG, Kim D (2000) Parameterization of cold-season processes in the MAPS land-surface scheme. J Geophys Res 105:4077–4086

    Article  Google Scholar 

  • Smith SL, Burgess MM (1999) Mapping the sensitivity of canadian permafrost to climate warming. In: Proceedings of IUGG 99 Symposium, vol 256. HS2 IAHS Publications, pp 71–80

  • Takata K, Kimoto M (2000) A numerical study on the impact of soil freezing on the continental-scale seasonal cycle. J Meteorol Soc Jpn 78:199–221

    Google Scholar 

  • Vinnikov KY, Robock A, Speranskaya NA, Schlosser CA (1996) Scales of temporal and spatial variability of midlatitude soil moisture. J Geophys Res 101:7163–7174

    Article  Google Scholar 

  • Viterbo P, Beljaars ACM (1995) An improved land surface parameterization scheme in the ECMWF model and its validation. J Climate 8:2716–2748

    Article  Google Scholar 

  • Viterbo P, Beljaars ACM, Mahfouf JF, Teixeira J (1999) The representation of soil moisture freezing and its impact on the stable boundary layer. QJR Meteorol Soc 125:2401–2426

    Article  Google Scholar 

  • Waelbrock C (1993) Climate-soil processes in the presence of permafrost: a system modelling approach. Ecol Model 69:185–225

    Article  Google Scholar 

  • Weller G, Chapin FS, Everett KR, Hobbie JE, Kane D, Oechel WC, Ping CL, Reeburgh WS, Walker D, Walsh J (1995) The Arctic flux study: a regional view of trace gas release. J Biogeogr 22:365–374

    Google Scholar 

  • Zhang T, Barry RG, Brown J (1999) Statistics and characteristics of permafrost distribution in the Northern Hemisphere. Polar Geogr 23:132–154

    Google Scholar 

Download references

Acknowledgements

This work was supported by the French Ministère de la Recherche (contracts “ACI Jeunes Chercheurs” No. 3076 and “Coup de Pouce 1999”), by “Programme National d’Etude de la Dynamique du Climat” (contract “IACCCCA”), and by “ECLIPSE”. We sincerely thank Wilhelm May for providing the ECHAM4-GCM SSC. Thanks to Igor Mokhov for his constructive comments. We are grateful to the two anonymous who help to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krinner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poutou, E., Krinner, G., Genthon, C. et al. Role of soil freezing in future boreal climate change. Climate Dynamics 23, 621–639 (2004). https://doi.org/10.1007/s00382-004-0459-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0459-0

Keywords

Navigation