Skip to main content

Advertisement

Log in

Sensitivity of coastal polynyas and high-salinity shelf water production in the Ross Sea, Antarctica, to the atmospheric forcing

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Coastal polynyas around Antarctica are the place of intense air–sea exchanges which eventually lead to the formation of high-salinity shelf waters (HSSW) over continental shelves. Here, the influence of atmospheric forcing on coastal polynyas in the Ross Sea is studied by contrasting the response of a regional ocean/sea-ice circulation model to two different atmospheric forcing sets. A first forcing (DFS3) is based on ERA40 atmospheric surface variables and satellite products. A second forcing (MAR) is produced on the basis of ERA40 with a dynamical downscaling procedure. As compared to DFS3, MAR forcing is shown to improve substantially the representation of small-scale patterns of coastal winds with stronger katabatic winds along the coast. The response of the ocean/sea-ice model to the two forcing sets shows that the MAR forcing improves substantially the geographical distribution of polynyas in the Ross Sea. With the MAR forcing, the polynya season is also shown to last longer with a greater ice-production rate. As a consequence, a greater flow of dense water out of the polynyas is found with the MAR forcing and the properties of HSSW are notably improved as compared to the DFS3 forcing. The factors contributing to the activity of Terra Nova Bay and Ross Ice Shelf polynyas in the model are studied in detail. The general picture that emerges from our simulations is that the properties of HSSW are mostly set by brine rejection when the polynya season resume. We found that coastal polynyas in the Ross Sea export about 0.4 Sv of HSSW which then flows along three separate channels over the Ross Shelf. A 6-month time lag is observed between the peak of activity of polynyas and the maximum transport across the sills in the channels with a maximum transport of about 1 Sv in February. This lag corresponds to the time it takes to the newly formed HSSW to spread from the polynya to the sills (at a speed of nearly 2 cm s−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Note that MAR katabatic winds decrease off-shore whereas DFS3 winds increase. Consequently, the averaged wind speed over the whole area of the TNB polynya is similar in both experiments (Table 2).

References

  • Arrigo RK, van Dijken GL (2003) Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res. doi:10.1029/2002JC001739

  • Assmann KM, Hellmer HH, Beckmann A (2003) Seasonal variation in circulation and water mass distribution on the Ross continental shelf. Antarct Sci 15(1):3–11

    Article  Google Scholar 

  • Barnier B, Madec G, Penduff T, Molines JM, Tréguier AM, Beckmann A, Biastoch A, Boning C, Dengg J, Gulev S, Le Sommer J, Rémy E, Talandier C, Theetten S, Maltrud M, Mc LJ (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution. Ocean Dyn 56:543–567

    Article  Google Scholar 

  • Beckmann A, Dosher R (1997) A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J Phys Oceanogr 27:581–591

    Article  Google Scholar 

  • Biastoch A, Böning CW, Lutjeharms JRE (2009) Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature 456:489–492

    Article  Google Scholar 

  • Brodeau L, Barnier B, Penduff T, Treguier A-M, Gulev S (2010) An ERA40 based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104

    Article  Google Scholar 

  • Broeke MR, Van De Wal RSW, Wild M (1997) Representation of antarctic katabatic winds in a high-resolution GCM and a note on their climate sensitivity. J Climate 10:3111–3130

    Article  Google Scholar 

  • Bromich DH (1989) Satellite analysis of Antarctic wind behaviour. Bull Am Meteorol Soc 70:738–749

    Article  Google Scholar 

  • Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow cover stratigraphy for operational avalanche forecasting. J Glaciol 128:13–22

    Google Scholar 

  • Budillon G, Pacciaroni M, Cozzy S, Rivaro P, Ianni C, Cantoni C (2003) An optimum multiparameter mixing analysis of shelf waters in the Ross Sea. Antarct Sci 15:105–118

    Article  Google Scholar 

  • Dinniman MS, Klinck JM, Smith WO Jr (2007) Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antartica. J Geophys Res. doi:10.1029/2006JC004036

  • Drakkar Group (2007) Eddy-permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges 42:8–10

    Google Scholar 

  • Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(C6):12.609–12.646

    Article  Google Scholar 

  • Gallée H (1995) Simulation of the mesocyclonic Activity in the Ross Sea, Antarctica. Mon Weather Rev 123:2050–2069

    Article  Google Scholar 

  • Gallée H, Schayes G (1994) Development of a three dimensional meso-scale primitive equations model, katabatic winds simulation in the area of Terra Nova Bay. Ant Mon Weather Rev 122:671–685

    Article  Google Scholar 

  • Gallée H, Guyomarc’h G, Brun E (2001) Impact of snow drift on the antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Bound-Layer Meteorol 99:1–19

    Article  Google Scholar 

  • Gallée H, Peyaud V, Goodwin I (2005) Simulation of the net snow accumulation along the Wilkes Land transect, Antarctica, with a regional climate model. Ann Glaciol 41:1–6

    Article  Google Scholar 

  • Gordon AL, Huber B, McKee D, Visbeck M (2010) A seasonal cycle in the export of bottom water from the Weddell Sea. Nat Geosci 3(551):556

    Google Scholar 

  • Hervieux G (2007) Etudes numérique des interactions courant-topographie: applications au gyre subpolaire, aux seuils de gibraltar et des mers Nordiques. phd thesis, Université Joseph Fourier, 2007

  • Hibler W (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846

    Article  Google Scholar 

  • Hoppema M, Anderson LG (2007). Biogeochemistry of polynyas and their role in sequestration of anthropogenic constituents. In: Smith WO Jr et al (eds) Polynyas: windows to the world. Elsevier Oceanography Series 74:193–221

  • Jacobs SS, Comiso JC (1989) Sea ice and oceanic processes on the Ross Sea continental shelf. J Geophys Res 94(C12):18,195–18,211

    Article  Google Scholar 

  • Jacobs S, Hellmer H, Doake D, Jenkins A, Frolich R (1992) Melting of ice shelves and the mass balance of Antarctica. J Glaciol 38:375–387

    Google Scholar 

  • Jourdain NC (2007) Simulations climatiques couplées Atmosphère Océan Glace de mer en Antarctique. PhD Thesis, Université Joseph Fourier. Online: http://tel.archives-ouvertes.fr/tel-00266564/en/

  • Jourdain NC, Gallée H (2011) Influence of the representation of glacier valleys across the Transantarctic Mountains in an atmospheric regional model. Clim Dyn 36(5–6):1067–1081

    Article  Google Scholar 

  • Jourdain NC, Mathiot P, Gallée H, Barnier B (2011) Influence of coupling on atmosphere, sea ice and ocean regional models in the Ross Sea sector, Antarctica. Clim Dyn 36(7–8):1523–1543. doi:10.1007/s00382-010-0889-9

    Article  Google Scholar 

  • Kurtz D, Bromwich DH (1985) A recurring, athmospherically forced polynya in Terra Nova Bay. In: Jacobs SS (ed) Oceanology of the Antarctic Continental Shelf. Antarc Res Series, vol 43. A.G.U., Washington, D. C., pp 177–201

  • Large WG,Yeager SG (2004) Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. Technical Report TN-460 + TR, NCAR, p 105

  • Le Sommer J, Penduff T, Theetten S, Madec G, Barnier B (2009) How momentum advection schemes influence current-topography interactions at eddy permitting resolution. Ocean Model 29(1):1–14

    Article  Google Scholar 

  • Lübbecke J, Böning CW, Biastoch A (2008) Variability in the subtropical–tropical cells and its effect on near-surface temperature of the equatorial Pacific: a model study. Ocean Sci 4:73–88

    Article  Google Scholar 

  • Lythe MB, Vaughan DG (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res Solid Earth 106:11335–11351

    Article  Google Scholar 

  • Madec G (2008) NEMO, the Ocean Engine. Tech. rep., Notes de l’IPSL (27), ISSN1288-1619, Université P. et M. Curie, B102 T15-E5, 4 place Jussieu, Paris cedex 5, p 193

  • Morales Maqueda MA, Willmot AJ, Biggs NRT (2004) Polynya dynamics: a review of observations and modelling. Rev Geophys 42, RG1004, doi:10.1029/2002RG000116

  • Massom R, Harris PT, Michael KJ, Potter MJ (1998) The distribution and formative processes of latent heat polynyas in East Antarctica. Ann Glaciol 27:420–426

    Google Scholar 

  • Massonnet F, Fichefet T, Goosse H, Vancoppenolle M, Mathiot P, Koënig Beatty C (2011) On the influence of model physics on simulations of Arctic and Antarctic sea ice. Cryosphere 5(687–699):2011

    Google Scholar 

  • Mathiot P (2009) Influence du forage atmosphérique sur la représentation de la glace de mer et des eaux de plateau en Antarctique dans une étude de modélisation numérique, Phd thesis, Université Joseph Fourier. Available from: http://tel.archives-ouvertes.fr/tel-00375960

  • Mathiot P, Barnier B, Gallée G, Molines JM, Le Sommer J, Juza M, Penduff T (2010) Introducing katabatic winds in global ERA40 fields to simulate their impacts on the Southern Ocean and sea-ice. Ocean Model 35(4):277–344

    Article  Google Scholar 

  • Mathiot P, Goosse H, Fichefet T, Barnier B, Gallée H (2011) Modelling the seasonal variability of the Antarctic slope current. Ocean Sci 7:455–470

    Article  Google Scholar 

  • Orsi AH, Wiederwohl CL (2009) A recount of Ross Sea waters. Deep-Sea Res II 56:778–795

    Article  Google Scholar 

  • Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing and production of Antarctic bottom water. Prog Oceanogr 43:55–109

    Article  Google Scholar 

  • Penduff T, Le Sommer J, Barnier B, Treguier A-M, Molines J-M, Madec G (2007) Influence of numerical schemes on current-topography interactions in 1/4° global ocean simulations. Ocean Sci 3:509–524

    Article  Google Scholar 

  • Penduff T, Juza M, Brodeau L, Smith GC, Barnier B, Molines J-M, Treguier A-M, Madec G (2010) Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales. Ocean Sci 6:269–284

    Article  Google Scholar 

  • Petrelli P, Bindoff NL, Bergamasco A (2008) The sea ice dynamics of Terra Nova Bay and Ross Ice Shelf Polynyas during a spring and winter simulation. J Geophys Res 113(C09). doi:10.1029/2006JC004048

  • Smith WHF, Sandwell DT (1997) Global sea-floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962

    Article  Google Scholar 

  • Tamura T, Ohshima KI, Nihashi S (2008) Mapping of sea ice production for Antarctic coastal polynyas. Geophys Res Lett. doi:10.1029/2007GL032903

  • Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Dulière V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice-ocean model. Ocean Model 8:175–201

    Article  Google Scholar 

  • Treguier A-M, Barnier B, de Miranda A, Molines J-M, Grima N, Imbard M, Madec G, Messager C, Michel S (2001) An eddy permitting model of the Atlantic circulation: evaluating open boundary conditions. J Geophys Res 106:22115–11129

    Article  Google Scholar 

  • Tremblay JE, Smith WO (2007) Primary production and nutrient dynamics in polynyas. In: Barber DG, Smith WO (eds) Polynyas: windows into the world. Elsevier, New York, pp 239–270

    Chapter  Google Scholar 

  • Williams GD, Bindoff NL, Marsland SJ, Rintoul SR (2008) Formation and export of dense water from the Adélie Depression, East Antarctica. J Geophys Res 113(C04)

Download references

Acknowledgments

The authors acknowledge support from Ministère de l’Education Nationale et de la Recherche and from Centre National de la Recherche Scientifique (CNRS). This work is a contribution of the DRAKKAR project. Support to DRAKKAR comes from various grants and programmes listed hereafter: French national programmes GMMC, LEFE, and PICS2475. The contribution of Institut National des Sciences de l’Univers (INSU) to these programmes is particularly acknowledged. DRAKKAR acknowledge the support from the Centre National d’Etudes Spatiales (CNES) through the OST/ST. Computations presented in this study were performed at Institut du Développement et des Ressources en Informatique Scientifique (IDRIS) and on the local MIRAGE computer. Partial support from the European Commission under Contract SIP3-CT-2003-502885 (MERSEA project) is gratefully acknowledged. The authors are also grateful to the members of the Drakkar Group for their lively discussions and comments during the annual DRAKKAR meeting. Josiane Brasseur is thanked for her continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Mathiot.

Additional information

Responsible Editor: Pierre De Mey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathiot, P., Jourdain, N.C., Barnier, B. et al. Sensitivity of coastal polynyas and high-salinity shelf water production in the Ross Sea, Antarctica, to the atmospheric forcing. Ocean Dynamics 62, 701–723 (2012). https://doi.org/10.1007/s10236-012-0531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-012-0531-y

Keywords

Navigation