Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP

Abstract

ICE-CORE reconstructions of atmospheric methane concentrations for the past 220 kyr have revealed large variations associated with different climatic periods1–4. But the phase relationship between climate and methane has been uncertain because of dating uncertainties and the coarse sampling interval of available methane records. Here we present a high-resolution record of atmospheric methane from 40 to 8 kyr ago from the GRIP ice core in Green-land. Our improved resolution and dating allow us to conclude that the large changes in atmospheric methane concentration during the last deglaciation were in phase (±200 years) with the variations in Greenland climate. Our results confirm the previous observation3 that methane increased to Holocene levels when much of the Northern wetlands was still ice-covered, lending support to the suggestion3 that low-latitude wetlands were responsible for the observed changes. We observe oscillations in methane concentration associated with the warm periods (interstadials) that occurred throughout the glacial period5, suggesting that the interstadials were at least hemispheric in their extent. We propose that variations in the hydrological cycle at low latitudes may be responsible for the variations in both methane and Greenland temperature during the interstadials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stauffer, B., Lochbronner, E., Oeschger, H. & Schwander, J. Nature 332, 812–814 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Raynaud, D., Chappellaz, J., Barnola, J. M., Korotkevich, Y. S. & Lorius, C. Nature 333, 655–657 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Chappellaz, J., Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 345, 127–131 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Jouzel, J. et al. Nature 364, 407–412 (1993).

    Article  ADS  Google Scholar 

  5. Johnsen, S. J. et al. Nature 359, 311–313 (1992).

    Article  ADS  Google Scholar 

  6. Etheridge, D. M., Pearman, G. I. & Fraser, P. J. Tellus 44B, 282–294 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Raynaud, D. et al. Science 259, 926–934 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Raynaud, D. & Chappellaz, J. The Global Cycle of Atmospheric Methane, NATO ARW Ser. (ed. Khalil, M. A. K.) (Springer, Berlin, in the press).

  9. Schwander, J. et al. J. geophys. Res. 98, 2831–2838 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Barnola, J. M., Pimienta, P., Raynaud, D. & Korotkevich, Y. S. Tellus 43B, 83–90 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Dansgaard, W. et al. Nature 364, 218–220 (1993).

    Article  ADS  Google Scholar 

  12. Martinerie, P., Raynaud, D., Etheridge, D., Barnola, J. M. & Mazaudier, D. Earth planet. Sci. Lett. 112, 1–13 (1992).

    Article  ADS  Google Scholar 

  13. Peteet, D. et al. Quat. Sci. Rev. (in the press).

  14. Thompson, A. M. Science 256, 1157–1165 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Nisbet, E. G. J. geophys. Res. 97, 12859–12867 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Chappellaz, J. A., Fung, I. Y. & Thompson, A. M. Tellus 45B, 228–241 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Adams, J. M., Faure, H. & Petit-Maire, N. Nature 355, 2l4 (1992).

    Article  Google Scholar 

  18. Legrand, M., De Angelis, M. J. geophys. Res. (submitted).

  19. Street-Perrott, F. A. & Roberts, N. in Variations in the Global Water Budget (eds Street-Perrott, A., Beran, M. & Ratcliffe, R.) 331–345 (Reidel, Dordrecht, 1983).

    Google Scholar 

  20. Street-Perrott, F. A. & Perrott, R. A. Nature 343, 607–612 (1990).

    Article  ADS  Google Scholar 

  21. Gasse, F. & Fontes, J. C. in The Last Deglaciation: Absolute and Radiocarbon Chronologies, NATO ASI Ser. 12 (eds Bard, E. & Broecker, W. S.) 295–325 (Springer, Berlin, 1992).

    Book  Google Scholar 

  22. Van Campo, E. & Gasse, F. Quat. Res. 39, 300–313 (1993).

    Article  Google Scholar 

  23. Broecker, W. S. Oceanography 4, 79–89 (1991).

    Article  Google Scholar 

  24. Bond, G. et al. Nature 360, 245–249 (1992).

    Article  ADS  Google Scholar 

  25. Duplessy, J. C. et al. Nature 358, 485–488 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chappellaz, J., Bluniert, T., Raynaud, D. et al. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366, 443–445 (1993). https://doi.org/10.1038/366443a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366443a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing