Skip to main content

Advertisement

Log in

Validation of a limited area model over Dome C, Antarctic Plateau, during winter

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The limited area model MAR (Modèle Atmosphérique Régional) is validated over the Antarctic Plateau for the period 2004–2006, focussing on Dome C during the cold season. MAR simulations are made by initializing the model once and by forcing it through its lateral and top boundaries by the ECMWF operational analyses. Model outputs compare favourably with observations from automatic weather station (AWS), radiometers and atmospheric soundings. MAR is able to simulate the succession of cold and warm events which occur at Dome C during winter. Larger longwave downwelling fluxes (LWD) are responsible for higher surface air temperatures and weaker surface inversions during winter. Warm events are better simulated when the small Antarctic precipitating snow particles are taken into account in radiative transfer computations. MAR stratosphere cools during the cold season, with the coldest temperatures occurring in conjunction with warm events at the surface. The decrease of saturation specific humidity associated with these coldest temperatures is responsible for the formation of polar stratospheric clouds (PSCs) especially in August-September. PSCs then contribute to the surface warming by increasing the surface downwelling longwave flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Argentini S, Viola A, Sempreviva AM, Petenko I (2005) Summer boundary-layer height at the plateau site of Dome C, Antarctica. Boundary Layer Meteorol 115: 409–422. doi:10.1007/s10546-004-5643-6

    Article  Google Scholar 

  • Aristidi E, Agabi K, Azouit M, Fossat E, Vernin J, Travouillon T, Lawrence JS, Meyer C, Storey JWV, Halter B, Roth WL, Walden V (2005) An analysis of temperatures and wind speeds above Dome C, Antarctica. Astron Astrophys 430:739–746. doi: 10.1051/0004-6361:20041876

    Article  Google Scholar 

  • Bintanja R (2000) Snowdrift suspension and atmospheric turbulence. Part I: theoretical background and model description. Boundary Layer Meteorol 95:343–368

    Article  Google Scholar 

  • Connolley WM (1996) The antarctic temperature inversion. Int J Climatol 16:1333–1342

    Article  Google Scholar 

  • Ebert EE, Curry JA (1992) A parameterization of ice cloud optical properties for climate models. J Geophys Res 97(D4):3831–3836

    Google Scholar 

  • Ellison ME, Walden VP, Campbell JR, Spinhirne J (2006) Properties of water-only, mixed-phase, and ice-only clouds over the South Pole. In: American Meteorological Society (ed) Proceedings of the 12th conference on cloud physics and 12th conference on atmospheric radiation, 9–14 July 2006. Madison, WI, Boston, MA

  • Fletcher NH (1962) Physics of rain clouds. Cambridge University Press, London

  • Fujita K, Abe O (2006) Stable isotopes in daily precipitation at Dome Fuji, East Antarctica. Geophys Res Lett 33:L18503, doi:10.1029/2006GL026936

  • Gallée H, Peyaud V, Goodwin I (2005) Temporal and spatial variability of the Antarctic ice sheet surface mass balance assessed from a comparison between snow stakes measurements and regional climate modeling. Ann Glaciol 41:17–22

    Article  Google Scholar 

  • Gallée H, Guyomarc’h G, Brun E (2001) Impact of the snow drift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Boundary Layer Meteorol 99:1–19

    Article  Google Scholar 

  • Gallée H (1995) Simulation of the mesocyclonic activity in the Ross Sea, Antarctica. Mon Wea Rev 123:2051–2069

    Article  Google Scholar 

  • Gallée H, Schayes G (1994) Development of a three-dimensional Meso–γ primitive equations model. Katabatic Winds Simulation in the area of Terra Nova Bay, Antarctica. Mon Wea Rev 122:671–685

    Article  Google Scholar 

  • Guo Z, Bromwich DH, Cassano JJ (2003) Evaluation of polar MM5 simulations of Antarctic atmospheric circulation. Mon Wea Rev 131:384–411

    Article  Google Scholar 

  • Helsen MM, van de Wal RSW, van den Broeke MR, van As D, Meijer HAJ, Reijmer C (2005) Oxygen isotope variability in snow from western Dronning Maud Land, Antarctica and its relation to temperature. Tellus 57B(5):423–435

    Google Scholar 

  • Hines KM, Bromwich DH, Rasch PJ, Iacono MJ (2004) Antarctic clouds and radiation within the NCAR climate models. J Climate 17:1198–1212

    Article  Google Scholar 

  • Levkov L, Rockel B, Kapitza H, Raschke E (1992) 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Beitr Phys Atmosph 65:35–57

    Google Scholar 

  • Lin Y-L, Farley RD, Orville HD (1983) Bulk parameterization of the snow field in a cloud model. J Appl Meteorol 22:1065–1092

    Article  Google Scholar 

  • Lubin D, Chen B, Bromwich DH, Somerville RCJ, Lee W-H, Hines KM (1998) The impact of Antarctic cloud radiative properties on a GCL climate simulation. J Climate 11:447–462

    Article  Google Scholar 

  • Mahesh A, Walden VP, Warren SG (1997) Radiosonde temperature measurements in strong inversions: correction for thermal lag based on an experiment at the south pole. J Atmos Oceanic Technol 14:45–53

    Article  Google Scholar 

  • Marbaix P, Gallée H, Brasseur O, van Ypersele J-P (2003) Lateral boundary conditions in regional climate models: a detailed study of the relaxation procedure. Mon Wea Rev 131:461–479

    Article  Google Scholar 

  • Masson-Delmotte V, Hou S, Ekaykin A, Jouzel J, Aristarain A, Bernardo RT, Bromwich D, Cattani O, Delmotte M, Falourd S, Frezzotti M, Gallée H, Genoni I, Isaksson E, Landais A, Helsen MM, Hoffmann G, Lopez J, Morgan V, Motoyama H, Noone D, Oerter H, Petit JR, Royer A, Uemura R, Schmidt GA, Schlosser E, Simoes JC, Steig EJ, Stenni B, Stievenard M, van den broeke MR, van de wal RSW, vande berg WJ, Vimeux F, White JWC (2008) A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation and isotope modelling. J Climate 21(13):3359–3387 doi:10.1175/2007JCLI2139.1

    Article  Google Scholar 

  • Meyers MP, DeMott PJ, Cotton WR (1992) New primary ice-nucleation parameterizations in an explicit cloud model. J Appl Meteorol 31:708–721

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Lacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682

    Article  Google Scholar 

  • Morcrette JJ (1984) Sur la paramétrisation du rayonnement dans les modèles de la circulation générale atmosphérique. Univ. des Sci. et Tech. de Lille. France, Thèse de Doctorat d’Etat, 373 pages

  • Morcrette J-J, Mlawer EJ, Lacono MJ, Clough SA (2001) Impact of the radiation-transfer scheme RRTM in the ECMWF forecasting system. Newsletter no. 91. European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, Berkshire RG2 9AX, UK (available from http://www.ecmwf.int/publications/newsletters/pdf/91.pdf)

  • Parish TR, Bromwich DH (eds) (2002) Ross Island meteorology experiment (RIME) detailed science plan. BPRC miscellaneous series M-424, Byrd Polar Research Center, The Ohio State University, Columbus p 39

  • Rowe PM, Miloshevich LM, Turner DD, Walden VP (2008) Dry bias in Vaisala RS90 radiosonde humidity profiles over Antarctica. J Atmos Oceanic Technol, accepted

  • Spinhirne JD, Palm SP, Hart WD (2005) Antarctica cloud cover for October 2003 from GLAS satellite lidar profiling. Geophys Res Letters 32:L22S05, doi:10.1029/2005GL023782

    Article  Google Scholar 

  • Stearns C, Weidner G (1990) The polar automatic weather station project of the University of Wisconsin. In: Proceedings of the international conference on the role of the polar regions in global change, vol I, pp 58-62, June 11–15, Fairbanks, AK

  • Sukoriansky S, Galperin B, Perov V (2005) Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over seaa ice. Boundary Layer Meteorol 117:231–257

    Article  Google Scholar 

  • Tomasi C, Petkov B, Benedetti E, Vitale V, Pellegrini A, Dargaud G, De Silvestri L, Grigioni P, Fossat E, Roth WL, Valenziano L (2006) Characterization of the atmospheric temperature and moisture conditions above Dome C (Antarctica) during austral summer and fall months. J Geophys Res 111:D20305, doi:10.1029/2005JD006976

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. QJR Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Urbini S, Frezzotti M, Gandolfi S, Vincent C, Scarchilli C, Vittuari L, Fily M (2008) Historical behaviour of Dome C and Talos Dome (East Antarctica) as investigated by snow accumulation and ice velocity measurements. Glob Planet change 60:576–588

    Article  Google Scholar 

  • Walden V, Warren SG, Tuttle E (2003) Atmospheric ice crystals over the antarctic plateau in winter. J Appl Meteorol 42:1391–1405

    Article  Google Scholar 

  • Walden VP, Ellison ME, Brandt RE, Town MS, Hudson SR, Jones RM (2005) Properties of super-cooled water clouds over South Pole. In: American Meteorological Society (ed) Proceedings of the 8th conference on polar meteorology and oceanography, 9–13 January 2005, San Diego, CA, Boston, MA, CD-ROM

  • Wang Z, Stephens G, Deshler T, Trepte C, Parish T, Vane D, Winker D, Liu D, Adhikari L (2008) Association of Antarctic polar stratospheric cloud formation on tropospheric cloud systems. Geophys. Res Lett 35:L13806, doi:10.1029/2008GL034209

    Article  Google Scholar 

Download references

Acknowledgments

We thank Steve Colwell for the quality check of the AWS data. I. Gorodetskaya was supported by Agence Nationale de la Recherche (France) grant OTP 232 333. Computation were realised with IDRIS computing resources. The IPEV-PNRA ‘Concordia’ Cooperative Programme—Routine Meteorological Observations is acknowledged for providing atmospheric soundings data. French LEFE/IDAO project Charmant is acknowledged for providing support for publishing the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Gallée.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallée, H., Gorodetskaya, I.V. Validation of a limited area model over Dome C, Antarctic Plateau, during winter. Clim Dyn 34, 61–72 (2010). https://doi.org/10.1007/s00382-008-0499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0499-y

Keywords

Navigation