Skip to main content

The Ice Core Record of Atmospheric Methane

  • Chapter
Atmospheric Methane
  • 491 Accesses

Abstract

The global evolution of atmospheric CH4 has been documented by sporadic direct measurements in the atmosphere during the 1960s and 1970s and by systematic survey only since 1979. The data from this time up to 1983 indicate an increasing trend at a rate of about 1% per year (Rasmussen and Khalil, 1986; Steele et al., 1987; Blake and Rowland, 1988). The most recent measurements indicate a decrease of the global accumulation of atmospheric CH4 during the years 1991 and 1992, and a return to a 1%/yr increase afterward (Steele et al., 1992; Dlugokencky et al., 1994; Lowe et al., 1994). The analysis of infrared solar absorption spectra (Rinsland et al., 1985; Zander et al., 1989) provides additional data of global concentrations for a few specific years (1951, 1975, 1981, 1984–87) and shows a mean increase of about 30% over the past 40 years. This long-term accumulation of CH4 in the atmosphere is related to human activities, particularly from agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alley, R. B., P.A. Mayewski, T. Sowers, M. Stuiver, K.C. Taylor, P. U. Clark. 1997. Holocene climate instability: A prominent, widespread event 8200 yr ago. Geology, 25: 483–486.

    Article  Google Scholar 

  • Barnola, J.-M., P. Pimienta, D. Raynaud, Y. S. Korotkevich. 1991. CO2-climate relationship as deduced from the Vostok ice core: A reexamination based on new measurements and on a re-evaluation of the air dating. Tellus, 43B: 83–90.

    Article  Google Scholar 

  • Blake, D. R., F. S. Rowland. 1988. Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science, 239: 1129–1131.

    Article  Google Scholar 

  • Blunier, T., J. Chappellaz, J. Schwander, J. M. Barnola, T. Desperts, B. Stauffer, D. Raynaud. 1993. Atmospheric methane, record from a Greenland ice core over the last 1,000 years. Geophys. Res. Lett., 20: 2219–2222.

    Article  Google Scholar 

  • Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, D. Raynaud. 1995. Variations in atmospheric methane concentration during the Holocene epoch. Nature, 374: 46–49.

    Article  Google Scholar 

  • Blunier, T., J. Schwander, B. Stauffer, T. Stocker, A. Dällenbach, A. Indermühle, J. Tschumi, J. Chappellaz, D. Raynaud, J.-M. Bamola. 1997. Timing of the Antarctic Cold Reversal and the atmospheric CO2 increase with respect to the Younger Dryas event. Geophys. Res. Lett., 24: 2683.

    Article  Google Scholar 

  • Broccoli, A. J., S. Manabe. 1987. The influence of continental ice, atmospheric CO2, land albedo on the climate of the Last Glacial Maximum. Clim. Dyn., 1: 87–99.

    Article  Google Scholar 

  • Brook, E. J., T. Sowers, J. Orchardo. 1996. Rapid variations in atmospheric methane concentrations during the past 110,000 years. Science, 273: 1087–1091.

    Article  Google Scholar 

  • Chaix, L., J. Ocampo, F. Dominé. 1996. Adsorption of CH, on laboratory-made crushed ice and on natural snow at 77 K. Atmospheric implications. C.R. Acad. Sci. Paris, 322: 609–616.

    Google Scholar 

  • Chappellaz, J. 1990. Etude du méthane atmosphérique au cours du dernier cycle climatique à partir de l’analyse de I’air piégé dans la glace antarctique. Ph-D thesis, Grenoble University, France, 214 pp.

    Google Scholar 

  • Chappellaz, J., J. M. Bamola, D. Raynaud, Y. S. Korotkevich, C. Lorius. 1990. Ice-core record

    Google Scholar 

  • of atmospheric methane over the past 160,000 years, Nature,345:127–131.

    Google Scholar 

  • Chappellaz, J., I. Y Fung, A.M. Thompson. 1993. The atmospheric CH„ increase since the Last

    Google Scholar 

  • Glacial Maximum: I. Source estimates. Tellus, 45B: 228–241.

    Google Scholar 

  • Chappellaz, J., T. Blunier, D. Raynaud, J. M. Bamola, J. Schwander, B. Stauffer. 1993. Synchronous changes in atmospheric CH, and Greenland climate between 40 and 8 kyr BP. Nature, 366: 443–445.

    Article  Google Scholar 

  • Chappellaz, J., T. Blunier, S. Kints, A. Dällenbach, J. M. Barnola, J. Schwander, D. Raynaud, B. Stauffer. 1997. Changes in the atmospheric CH, gradient between Greenland and Antarctica during the Holocene. J. Geophys. Res., 102:15, 987–15, 997.

    Google Scholar 

  • Craig, H., C. C. Chou. 1982. Methane: the record in polar ice cores. Geophys. Res. Lett., 9: 1221–1224.

    Article  Google Scholar 

  • Craig, H., C. C. Chou, J. A. Welhan, C.M. Stevens, A. Engelkemeir. 1988. The isotopic composition of methane in polar ice cores. Science, 242: 1535–1539.

    Article  Google Scholar 

  • Crutzen, P. J., C. Brühl. 1993. A model study of atmospheric temperatures and the concentrations of ozone, hydroxyl, and some other photochemically active gases during the glacial, the pre-industrial Holocene and the present. Geophys. Res. Lett., 20: 1047–1050.

    Article  Google Scholar 

  • Dibb, J. E., R.A. Rasmussen, P.A. Mayewski, G. Holdsworth. 1993. Northern Hemisphere concentrations of methane and nitrous oxide since 1800: results from the Mt Logan and 20D ice cores. Chemosphere, 27: 2413–2423.

    Article  Google Scholar 

  • Dlugokencky, E. J., L.P. Steele, P.M. Lang, K. A. Masarie. 1994. The growth rate and distribution of atmospheric methane. J. Geophys. Res., 99: 17, 021–17, 043.

    Google Scholar 

  • Etheridge, D. M., G. I. Pearman, F. De Silva. 1988. Atmospheric trace-gas variations as revealed by air trapped in an ice core from Law Dome, Antarctica. Ann. Glacio1., 10: 28–33.

    Google Scholar 

  • Etheridge, D. M., G. I. Pearman, P. J. Fraser. 1992. Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus, 44B: 282–294.

    Article  Google Scholar 

  • Fuchs, A., J. Schwander, B. Stauffer. 1993. A new ice mill allows precise concentration determination of methane and most probably also other trace gases in the bubble air of very small ice samples. J. Glaciol., 39: 199–203.

    Google Scholar 

  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, P. J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96: 13, 03313, 065.

    Google Scholar 

  • Grootes, P., M. Stuiver, J. W. C. White, S. Johnsen, J. Jouzel. 1993. Comparison of oxygen isotope records from the GISP2 and GRIP ice cores. Nature, 366: 552–554.

    Article  Google Scholar 

  • Johnsen, S. J., H. B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrup, C. U. Hammer, P. Iversen, J. Jouzel, B. Stauffer, J.P. Steffensen. 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 359: 311–313.

    Article  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1982. Secular trends of atmospheric methane (CH,). Chemosphere, 11: 877–883.

    Article  Google Scholar 

  • Legrand, M., P. Mayewski. 1997. Glaciochemistry of polar ice cores: a review. Rev. Geophys., 35: 219–243.

    Article  Google Scholar 

  • Lelieveld, J., P. J. Crutzen. 1992. Indirect chemical effects of methane on climate warming. Nature, 355: 339–342.

    Article  Google Scholar 

  • Lorius, C., J. Jouzel, D. Raynaud, J. Hansen, H. Le Treut. 1990. The ice-core record: climate sensitivity and future greenhouse warming. Nature, 347: 139–145.

    Article  Google Scholar 

  • Lowe, D.C., C. A. M. Brenninkmeijer, G. W. Brailsford, K. R. Lassey, A. J. Gomez. 1994. Concentration and “C records of atmospheric methane in New Zealand and Antarctica: evidence for changes in methane sources. J. Geophys. Res., 99: 16, 913–16, 925.

    Google Scholar 

  • Martinerie, P., G. P. Brasseur, C. Granier. 1995. The chemical composition of ancient atmospheres: A model study constrained by ice core data. J. Geophys. Res., 100: 14, 29114, 304.

    Google Scholar 

  • Nakazawa, T., T. Machida, K. Esumi, M. Tanaka, Y. Fujii, S. Aoki, O. Watanabe. 1993a. Measurements of CO, and CH„ concentrations in air in a polar ice core. J. Glaciol., 39: 209215.

    Google Scholar 

  • Nakazawa, T., T. Machida, M. Tanaka, Y. Fujii, S. Aoki, O. Watanabe. 1993b. Differences of the atmospheric CH, concentration between the Arctic and Antarctic regions in preindustrial/pre-agricultural era. Geophys. Res. Lett., 20: 943–946.

    Article  Google Scholar 

  • Nisbet, E.G. 1992. Sources of atmospheric CH, in early postglacial time. J. Geophys. Res., 97: 12, 859–12, 867.

    Google Scholar 

  • Paull, C. K., W. Ussler, W. P. Dillon. 1991. Is the extent of glaciation limited by marine gas hydrates? Geophys. Res. Lett., 18: 432–434.

    Article  Google Scholar 

  • Pearman, G.I., D. Etheridge, F. De Silva, P. J. Fraser. 1986. Evidence of changing concentrations of atmospheric CO2, N2O and CH, from air bubbles in Antarctic ice. Nature, 320: 248–250.

    Article  Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil. 1984. Atmospheric methane in the recent and ancient atmospheres: concentrations, trends and interhemispheric gradient. J. Geophys. Res., 89: 11, 599–11, 605.

    Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil. 1986. Atmospheric trace gases: trends and distributions over the last decade. Science 232:1623–1624.

    Google Scholar 

  • Rasmussen, R.A., M.A.K. Khalil, S.D. Hoyt. 1982. Methane and carbon monoxide in snow. J. Air Poll. Cont. Asso., 32: 176–178.

    Article  Google Scholar 

  • Raynaud, D., J. Chappellaz, J. M. Barnola, Y. S. Korotkevich, C. Lorius. 1988. Climatic and CH,-cycle implications of glacial-interglacial CH, change in the Vostok ice core. Nature, 333: 655–657.

    Article  Google Scholar 

  • Rind, D., D. Peteet, G. Kukla. 1989. Can Milankovitch orbital variation initiate the growth of ice sheets in a General Circulation Model? J. Geophys. Res., 41: 12, 851–12, 871.

    Google Scholar 

  • Rinsland, C.P., J. S. Levine, T. Miles. 1985. Concentration of methane in the troposphere deduced from 1951 infrared solar spectra. Nature, 330: 245–249.

    Article  Google Scholar 

  • Robbins, R. C., L.A. Cavanagh, L. J. Salas, E. Robinson. 1973. Analysis of ancient atmosphere. J. Geophys. Res. 78:5341–5344.

    Google Scholar 

  • Schwander, J. 1989. The transformation of snow to ice and the occlusion of gases. In: The Environmental Record in Glaciers and Ice Sheets, Report of the Dahlem Workshop held in Berlin 1988, March 13–18, John Wiley and Sons, Chichester, 51–67.

    Google Scholar 

  • Schwander, J., T. Sowers, J.-M. Barnola, T. Blunier, A. Fuchs, B. Malaizé. 1997. Age scale of the air in the summit ice: Implications for glacial-interglacial temperature change. J. Geophys. Res., 102: 19, 483–19, 493.

    Google Scholar 

  • Severinghaus, J.P., T. Sowers, E.J. Brook, R. B. Alley, M.L. Bender. 1997. Timing of abrupt climate change at the end of the Younger Dryas from thermally fractionated gases in polar ice. Nature,in press.

    Google Scholar 

  • Sowers, T., M. Bender, D. Raynaud. 1989. Elemental and isotopic composition of occluded 02 and N2 in polar ice. J. Geophys. Res., 94: 5137–5150.

    Article  Google Scholar 

  • Sowers, T., E. Brook, D. Etheridge, T. Blunier, A. Fuchs, M. Leuenberger, J. Chappellaz, J. M. Barnola, M. Wahlen, B. Deck, C. Weyhenmeyer. 1997. An interlaboratory comparison of techniques for extracting and analyzing trapped gases in ice cores. J. Geophys. Res., 102:26, 527–26, 538.

    Google Scholar 

  • Stauffer, B., G. Fischer, A. Neftel, H. Oeschger. 1985. Increase of atmospheric methane in Antarctic ice core. Science 229:1386–1388.

    Google Scholar 

  • Stauffer, B., E. Lochbronner, H. Oeschger, J. Schwander. 1988. Methane concentrations in the glacial atmosphere was only half that of the preindustrial Holocene Nature 332:812–814.

    Google Scholar 

  • Steele, L.P., P. J. Fraser, R.A. Rasmussen, M.A.K. Khalil, T. J. Conway, A. J. Crawford, R.H. Gammon, K. A. Masarie, K. W. Thoning. 1987. The global distribution of methane in the troposphere. J. Atmos. Chem., 5: 125–171.

    Article  Google Scholar 

  • Steele, L.P., E. J. Dlugokencky, P.M. Lang, P.P. Tans, R. C. Martin, K. A. Masarie. 1992. Slowing down of the global accumulation of atmospheric methane during the 1980s. Nature, 358: 313–316.

    Article  Google Scholar 

  • Stevens, C.M. 1993. Isotopic abundances in the atmosphere and sources. In: Atmospheric Methane: Sources, Sinks, and Role in Global Change, NATO ASI Series I13, Springer-Verlag, New York, 62–88.

    Google Scholar 

  • Thompson, A.M. 1992. The oxidizing capacity of the Earth’s atmosphere: probable past and future changes. Science, 256: 1157–1168.

    Article  Google Scholar 

  • Thompson, A.M., J. A. Chappellaz, I. Y. Fung, T. L. Kucsera. 1993. Atmospheric methane increase since the Last Glacial Maximum. 2. Interactions with oxidants. Tellus 45B:242–257.

    Google Scholar 

  • Thompson, A.M. 1996. Modeling framework for atmospheric trace gas measurements at the air-snow interface. In: Chemical Exchange Between the Atmosphere and Polar Snow, NATO ASI Series I43, Springer-Verlag, New York, 225–248.

    Google Scholar 

  • Thorpe, R. B., K. S. Law, S. Bekki, J. A. Pyle, E.G. Nisbet. 1996. Is methane-driven deglaciation consistent with the ice core record ? J. Geophys. Res., 101:28, 627–28, 635.

    Google Scholar 

  • Trudinger, C. M., I.G. Enting, D. M. Etheridge, R. J. Francey, V. A. Levchenko, L. P. Steele, D. Raynaud, L. Arnaud. 1997. Modeling air movement and bubble trapping in firn. J. Geophys. Res., 102: 6747–6763.

    Article  Google Scholar 

  • Zander, R., P. Demoulin, D. H. Ehhalt, U. Schmidt. 1989. Secular increases of the vertical abundance of methane derived from IR solar spectra recorded at the Jungfraujoch Station. J. Geophys. Res., 94: 1129–1139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chappellaz, J., Raynaud, D., Blunier, T., Stauffer, B. (2000). The Ice Core Record of Atmospheric Methane. In: Khalil, M.A.K. (eds) Atmospheric Methane. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04145-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04145-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08451-5

  • Online ISBN: 978-3-662-04145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics