Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T13:23:42.599Z Has data issue: false hasContentIssue false

5 - Modelling land-ice surface mass balance

Published online by Cambridge University Press:  16 October 2009

Wouter Greuell
Affiliation:
Institute for Marine and Atmospheric Research Utrecht
Christophe Genthon
Affiliation:
Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS/Université de Grenoble
Jonathan L. Bamber
Affiliation:
University of Bristol
Antony J. Payne
Affiliation:
University of Bristol
Get access

Summary

Introduction

The topic of this chapter is the surface mass balance, often called the specific balance, specific mass balance (as in Chapter 2) or simply the mass balance. The surface mass balance is defined as the total change in mass in a vertical column of glacier material during an undefined amount of time (in this chapter, the term ‘glacier’ refers to small glaciers, ice caps and ice sheets). Glacier material may include snow, ice and water. Changes in mass due to divergence or convergence of the ice velocity field are excluded, as well as mass changes due to processes occurring at the bedrock. Positive contributions to the mass balance are called accumulation, and negative contributions are called ablation. Snow fall is the dominant process causing accumulation on glaciers. In the lower parts of glaciers, ice caps and the Greenland ice sheet, melt followed by runoff of the melt water is the dominant ablation process. Other processes that contribute to the mass balance are evaporation (change from liquid to gas), condensation (change from gas to liquid) and sublimation (change from gas to solid and vice versa), removal and deposition of snow by avalanches and wind, and rain water that does not run off. In Antarctica and the higher parts of the Greenland ice sheet, sublimation forms the dominant contribution to ablation. Mass balance is often expressed in kg/m2, but the most widely employed unit is mm water equivalent or m water equivalent.

Type
Chapter
Information
Mass Balance of the Cryosphere
Observations and Modelling of Contemporary and Future Changes
, pp. 117 - 168
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambach, W. 1963. Untersuchungen zum Energieumsatz in der Ablationszone des grönländischen Inlandeises. EGIG 1957–1960, vol. 4, (4). Copenhagen, Bianco Lunos BogtrykkeriGoogle Scholar
Ambach, W. 1979. Zum Wärmehaushalt des Grönländischen Inlandeises: Vergleichende Studie im Akkumulations-und Ablationsgebiet. Polarforschung 49 (1), 44–54Google Scholar
Ambach, W. 1984. The influence of cloudiness on the net radiation balance of a snow surface with high albedo. J. Glaciol. 13 (67), 73–84CrossRefGoogle Scholar
Andreas, E. L. 1987. A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound. Layer Meteorol. 38, 159–84CrossRefGoogle Scholar
Arnold, N. S., Willis, I. C., Sharp, M. J., Richards, K. S. and Lawson, W. J. 1996. A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d'Arolla, Valais, Switzerland. J. Glaciol. 42 (140), 77–89CrossRefGoogle Scholar
Beljaars, A. and Holtslag, A. 1991. Flux parameterisation over land surfaces for atmospheric models. J. Appl. Meteorol. 30, 327–412.0.CO;2>CrossRefGoogle Scholar
Bintanja, R. 1998. The contribution of snowdrift sublimation to the surface mass balance of Antarctica. Ann. Glaciol. 27, 251–9CrossRefGoogle Scholar
Bintanja, R. 2000. Snowdrift suspension and atmospheric turbulence. Part II: Results of model simulations. Bound. Layer Meteorol. 95, 391–417Google Scholar
Bintanja, R. and Broeke, M. R. 1996. The influence of clouds on the radiation budget of ice and snow surfaces in Antarctica and Greenland in summer. Int. J. Climatol. 16, 1281–963.0.CO;2-A>CrossRefGoogle Scholar
Bozhinskiy, A. N., Krass, M. S. and Popovnin, V. V. 1986. Role of debris cover in the thermal physics of glaciers. J. Glaciol. 32 (111), 255–66CrossRefGoogle Scholar
Braithwaite, R. J. 1995a. Aerodynamic stability and turbulent sensible-heat flux over a melting ice surface, the Greenland ice sheet. J. Glaciol. 41, 562–71CrossRefGoogle Scholar
Braithwaite, R. J. 1995b. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J. Glaciol. 41 (137), 153–60CrossRefGoogle Scholar
Braithwaite, R. J. and Zhang, Y. 2000: Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. J. Glaciol. 46, 7–14CrossRefGoogle Scholar
Braithwaite, R. J., Laternser, M. and Pfeffer, W. T. 1994. Variations of near-surface firn density in the lower accumulation area of the Greenland ice sheet, Pâkitsoq, West Greenland. J. Glaciol. 40, 477–85CrossRefGoogle Scholar
Brock, B. W., Willis, I. C. and Sharp, M. J. 2000. Measurement and parameterization of albedo variations at Haut Glacier d'Arolla, Switzerland. J. Glaciol. 46 (155), 675–88CrossRefGoogle Scholar
Bromwich, D. H. 2000. Perspectives on reanalyses from polar applications. In Proceedings of the Second WCRP International Conference on Reanalyses. WMO/TD-no. 985, pp. 221–4
Brun, E., David, P., Sudul, M. and Brunot, G. 1992. A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glaciol. 38, 13–22CrossRefGoogle Scholar
Chen, J. and Funk, M. 1990. Mass balance of Rhonegletscher during 1882/83–1986/87. J. Glaciol. 36, 199–209CrossRefGoogle Scholar
Cullather, R. I., Bromwich, D. H. and Woert, M. L. 1998. Spatial and temporal variability of Antarctic precipitation from atmospheric methods. J. Climate 11, 334–672.0.CO;2>CrossRefGoogle Scholar
Denby, B. 1999. Second order modelling of turbulence in katabatic flows. Bound. Layer Meteorol. 92 (1), 67–100CrossRefGoogle Scholar
Denby, B. and Greuell, W. 2000. The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds. J. Glaciol. 46 (154), 445–52CrossRefGoogle Scholar
Denby, B. and Smeets, P. 2000. Derivation of turbulent fluxes profiles and roughness lengths from katabatic flow dynamics. J. Appl. Meteorol. 39 (9), 1601–122.0.CO;2>CrossRefGoogle Scholar
Denby, B. and Snellen, H. 2001. A comparison of surface renewal theory with the observed roughness length for temperature on a melting glacier surface. Boundary Layer Meteorol. 103, 459–68CrossRefGoogle Scholar
Déqué, M., Marquet, P. and Jones, R. G. 1998. Simulation of climate change over Europe using a global variable resolution general circulation model. Climate Dyn. 14, 173–89Google Scholar
Déry, S. J., Taylor, P. A. and Xiao, J. 1998. The thermodynamic effects of sublimating snow in the atmospheric boundary layer. Bound. Layer Meteorol. 89, 251–83Google Scholar
Douville, H., Royer, J. F. and Mahfouf, J. F. 1995. A new snow parameterization for the Météo-France climate model. Part 1: Validation in stand-alone experiments. Climate Dyn. 12, 21–5CrossRefGoogle Scholar
Forrer, J. and Rotach, M. W. 1997. On the turbulence structure in the stable boundary layer over the Greenland ice sheet. Bound. Layer Meteorol. 85, 111–36CrossRefGoogle Scholar
Friedmann, A., Moore, J. C., Thorsteinsson, T., Kipfstuhl, J. and Fischer, H. 1995. A 1200 year record of accumulation from northern Greenland. Ann. Glaciol. 21, 19–25CrossRefGoogle Scholar
Fujita, K. and Ageta, Y. 2000. Effect of summer accumulation on glacier mass balance on the Tibetan Plateau revealed by mass-balance model. J. Glaciol. 46 (153), 244–52CrossRefGoogle Scholar
Gallée, H. 1996. Mesoscale atmospheric circulations over the southern Ross Sea Sector, Antarctica. J. Appl. Meteor. 35, 1129–412.0.CO;2>CrossRefGoogle Scholar
Gallée, H. 1998. Simulation of blowing snow over the Antarctic ice sheet. Ann. Glaciol. 26, 203–6CrossRefGoogle Scholar
Garnier, B. and Ohmura, A. 1968. A method of calculating the direct short-wave radiation income on slopes. J. Appl. Meteorol. 7, 796–8002.0.CO;2>CrossRefGoogle Scholar
Garratt, J. R., 1992. The Atmospheric Boundary Layer. Cambridge University Press
Genthon, C. and Braun, A. 1995. ECMWF analyses and predictions of the surface climate of Greenland and Antarctica. J. Climate 8, 2324–322.0.CO;2>CrossRefGoogle Scholar
Genthon, C. and Krinner, G. 1998. Convergence and disposal of energy and moisture on the Antarctic polar cap from ECMWF reanalyses and forecasts. J. Climate 11, 1703–162.0.CO;2>CrossRefGoogle Scholar
Genthon, C. and Krinner, G. 2001. The Antarctic surface mass balance and systematic biases in GCMs. J. Geophys. Res. 106, 20653–64CrossRefGoogle Scholar
Genthon, C., Jouzel, J. and Déqué, M. 1994. Accumulation at the surface of polar ice sheets: observation and modeling for global climate change. In Desbois, M. and Desalmand, F., eds., Global Precipitations and Climate Change. NATO ASI Series I, vol. 26, pp. 53–76
Glover, R. W. 1999. Influence of spatial resolution and the treatment of orography on GCM estimates of the surface mass balance of the Greenland ice sheet. J. Climate 12, 551–632.0.CO;2>CrossRefGoogle Scholar
Gregory, J. M. and Oerlemans, J. 1998. Simulated future sea-level rise due to glacier melt based on regionally and seasonally resolved temperature changes. Nature 391, 474–6CrossRefGoogle Scholar
Grenfell, T. C., Warren, S. G. and Mullen, P. C. 1994. Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res. 99 (D9), 18 669–84CrossRefGoogle Scholar
Greuell, W. 1992. Hintereisferner, Austria: mass-balance reconstruction and numerical modelling of the historical length variations. J. Glaciol. 38, 233–44CrossRefGoogle Scholar
Greuell, W. 2000. Melt-water accumulation on the surface of the Greenland ice sheet: effect on albedo and mass balance. Geograf. Ann. 82A, 489–98CrossRefGoogle Scholar
Greuell, W. and Böhm, R. 1998. Two-metre temperatures along melting mid-latitude glaciers and implications for the sensitivity of the mass balance to variations in temperature. J. Glaciol. 44 (146), 9–20CrossRefGoogle Scholar
Greuell, W. and Knap, W. H. 2000. Remote sensing of the albedo and detection of the slush line on the Greenland ice sheet. J. Geophys. Res. 105 (D12), 15 567–76CrossRefGoogle Scholar
Greuell, W. and Konzelmann, T. 1994. Numerical modelling of the energy balance and the englacial temperature of the Greenland ice sheet. Calculation for the ETH-Camp location (West Greenland, 1155 m a.s.l.). Global & Planetary Change 9, 91–114CrossRefGoogle Scholar
Greuell, W. and Oerlemans, J. 1986. Sensitivity studies with a mass balance model including temperature profile calculations inside the glacier. Z. Gletscherkd. Glazialgeol. 22(2), 101–24Google Scholar
Greuell, W. and Smeets, C. J. J. P. 2001. Variations with elevation in the surface energy balance on the Pasterze (Austria). J. Geophys. Res. 106 (D23), 31 717–27CrossRefGoogle Scholar
Greuell, W., Knap, W. H. and Smeets, P. C. 1997. Elevational changes in meteorological variables along a midlatitude glacier during summer. J. Geophys. Res. 102 (D22), 25 941–54CrossRefGoogle Scholar
Griggs, M. 1968. Emissivities of natural surfaces in the 8- to 14-micron spectral region. J. Geophys. Res. 73, 7545–51CrossRefGoogle Scholar
Gueymard, C. 1993. Critical analysis and performance assessment of clear sky solar irradiance models using theoretical and measured data. Solar Energy 51(2), 121–38CrossRefGoogle Scholar
Hammer, N. 1993. Wurtenkees: Rekonstruktion einer 100jährigen Reihe der Gletschermassenbilanz. Z. Gletscherkd. Glazialgeol. 29 (1), 15–37Google Scholar
Hansen, J.et al. 1983. Efficient three-dimensional global models for climate studies: models I and II. Month. Weather Rev. 111, 609–622.0.CO;2>CrossRefGoogle Scholar
Hay, J. E. and Fitzharris, B. B. 1988. A comparison of the energy-balance and bulk-aerodynamic approaches for estimating glacier melt. J. Glaciol. 34 (117), 145–53CrossRefGoogle Scholar
Hibler, W. D. and Flato, G. M. 1992. Sea-ice models. In Trenberth, K. E., ed., Climate System Modeling. Cambridge University Press, pp. 413–36
Hines, K. M., Bromwich, D. H. and Liu, Z. 1997. Combined global climate model and mesoscale model simulations of Antarctic climate. J. Geophys. Res. 102, 13 747–60CrossRefGoogle Scholar
HIRETYCS (high-resolution ten-year climate simulations). 1998. Final report, available from Météo-France, Centre National de Recherches Météorologiques, Toulouse, France. http://www.cnrm.meteo.fr/hiretycs/final_report.htm
Hock, R. 1998. Modelling of glacier melt and discharge. Zürcher Geographische Schriften, vol. 70. ETH Zurich, Geographisches Institut
Hock, R. 1999. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol. 45 (149), 101–11CrossRefGoogle Scholar
Hock, R. and Holmgren, B. 1996. Some aspects of energy balance and ablation of Storglaciären, northern Sweden. Geograf. Ann. 78A (2–3), 121–32Google Scholar
Högström, U. 1988. Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound. Layer Meteorol. 42, 55–78CrossRefGoogle Scholar
Holmgren, B. 1971. Climate and energy exchange on a sub-polar ice cap in summer. Part D: On the vertical turbulent fluxes of water vapour at Ice Cap Station. Meteorologiska Institutionen Uppsala Universitetet, Meddelande no. 110
Hutter, K. 1995. Avalanche dynamics. In Singh, V. P., ed., Hydrology of Disasters. Dordrecht, Kluwer Academic Publishers, pp. 317–94
Huybrechts, P. and Oerlemans, J. 1990. Response of the Antarctic ice sheet to future greenhouse warming. Climate Dyn. 5, 93–102CrossRefGoogle Scholar
Huybrechts, P. and Wolde, J. 1999. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate 12 (8), 2169–882.0.CO;2>CrossRefGoogle Scholar
Idso, S. B. 1981. A set of equations for full spectrum and 8- to 14-mm and 10.5- to 12.5-mm thermal radiation from cloudless skies. Water Resources Res. 17 (2), 295–304CrossRefGoogle Scholar
Issler, D. 1998. Modelling of snow entrainment and deposition in powder-snow avalanches. Ann. Glaciol. 26, 253–8CrossRefGoogle Scholar
Janssens, I. and Huybrechts, Ph. 2000. The treatment of meltwater retention in mass-balance parameterisations of the Greenland ice sheet. Ann. Glaciol. 31, 133–40CrossRefGoogle Scholar
Jóhannesson, T., Sigurdsson, O., Laumann, T. and Kennett, M. 1995. Degree-day glacier mass-balance modelling with applications to glaciers in Iceland, Norway and Greenland. J. Glaciol. 41 (138), 345–58CrossRefGoogle Scholar
Kasten, F. 1983. Parametrisierung der Globalstrahlung durch Bedeckungsgrad und Trübungsfaktor. Ann. Meteorol. 20, 49–50Google Scholar
Kayastha, R. B., Ohata, T. and Ageta, Y. 1999. Application of a mass-balance model to a Himalayan glacier. J. Glaciol. 45 (151), 559–67CrossRefGoogle Scholar
Kiehl, J. T. 1992. Atmospheric general circulation modeling. In Trenberth, K. E., ed., Climate System Modeling. Cambridge University Press, pp. 319–69
Kimball, B. A., Idso, S. B. and Aase, J. K. 1982. A model of thermal radiation from partly cloudy and overcast skies. Water Resources Res. 18 (4), 931–6CrossRefGoogle Scholar
King, J. C. 1990. Some measurements of turbulence over an Antarctic ice shelf. Q. J. R. Meteorol. Soc. 116, 379–400CrossRefGoogle Scholar
King, J. C. and Anderson, P. S., 1994. Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf. Bound. Layer Meteorol. 69, 101–21CrossRefGoogle Scholar
King, J. C., Anderson, P. S.Smith, M. C. and Mobbs, S. D. 1996. The surface energy and mass balance at Halley, Antarctica during winter. J. Geophys. Res. 101 (D14), 19119–28CrossRefGoogle Scholar
Knap, W. H. and Oerlemans, J. 1996. The surface albedo of the Greenland ice sheet: satellite-derived and in situ measurements in the S⊘ndre Str⊘mfjord area during the 1991 melt season. J. Glaciol. 42, 364–74CrossRefGoogle Scholar
Knap, W. H., Brock, B. W., Oerlemans, J. and Willis, I. C. 1999. Comparison of Landsat-TM derived and ground-based albedos of Haut Glacier d'Arolla, Switzerland. Int. J. Remote Sensing 20 (17), 3293–310CrossRefGoogle Scholar
Koelemeijer, R., Oerlemans, J. and Tjemkes, S. 1993. Surface reflectance of Hintereisferner, Austria, from Landsat 5 TM imagery. Ann. Glaciol. 17, 17–22CrossRefGoogle Scholar
Kondo, J. and Yamazawa, H. 1986. Bulk transfer coefficient over a snow surface. Bound. Layer Meteorol. 34, 123–35CrossRefGoogle Scholar
König-Langlo, G. and Augstein, E. 1994. Parameterisation of the downward long-wave radiation at the Earth's surface in polar regions. Meteorol. Zeit. 6, 343–7Google Scholar
Konzelmann, T. and Ohmura, A. 1995. Radiative fluxes and their impact on the energy balance of the Greenland ice sheet. J. Glaciol. 41, 490–502CrossRefGoogle Scholar
Konzelmann, T., Wal, R. S. W., Greuell, W., Bintanja, R., Henneken, E. A. C. and Abe-Ouchi, A. 1994. Parameterization of global and longwave incoming radiation for the Greenland ice sheet. Global & Planetary Change 9, 143–64CrossRefGoogle Scholar
Krinner, G. and Genthon, C. 1998. GCM simulations of the last glacial maximum surface climate of Greenland and Antarctica. Climate Dyn. 14, 741–58CrossRefGoogle Scholar
Krinner, G., Genthon, C., Li, Z.-X. and Van, P. 1997. Studies of the Antarctic climate with a stretched grid GCM. J. Geophys. Res. 102, 13731–45CrossRefGoogle Scholar
Lefauconnier, B. and Hagen, J. O. 1990. Glaciers and climate in Svalbard: statistical analysis and reconstruction of the Br⊘ggerbreen mass balance for the last 77 years. Ann. Glaciol. 14, 148–52CrossRefGoogle Scholar
Lehning, M., Bartelt, P., Brown, B., Russi, T., Stöckli, U. and Zimmerli, M. 1999. SNOWPACK model calculations for avalanche warning based upon a new network of weather and snow stations. Cold Regions Sci. Technol. 30, 145–57CrossRefGoogle Scholar
Letréguilly, A. 1988. Relation between the mass balance of western Canadian mountain glaciers and meteorological data. J. Glaciol. 34 (116), 1–8CrossRefGoogle Scholar
Letréguilly, A., Huybrechts, P. and Reeh, N. 1991. Steady-state characteristics of the Greenland ice sheet under different climates. J. Glaciol. 37 (125), 149–57CrossRefGoogle Scholar
Leung, L. R. and Ghan, S. J. 1998. Parameterizing subgrid orographic precipitation and surface cover in climate models. Month. Weather Rev. 126, 3271–912.0.CO;2>CrossRefGoogle Scholar
McFarlane, N. 2000. Boundary layer processes. In Mote, P. and O'Neill, A., eds., Numerical Modeling of the Global Atmosphere in the Climate System. NATO Science Series vol. 550. Dordrecht, Kluwer Academic Press, pp. 221–38
McGuffie K. and Henderson-Sellers, A. 1996. A Climate Modeling Primer. New York, John Wiley and Sons, inc. CD-ROM
Male, D. H. and Granger, R. J. 1981. Snow surface and energy exchange. Water Resources Res. 17 (3), 609–27CrossRefGoogle Scholar
Martin, S. 1977. Analyse et reconstitution de la série des bilans annuels du Glacier de Sarennes, sa relation avec les fluctuations du niveau de trois glaciers du Massif du Mont-Blanc (Bossons, Argentière, Mer de Glace). Z. Gletscherkd. Glazialgeol. 13, 127–53Google Scholar
Mattson, L. E. and Gardner, J. S. 1989. Energy exchanges and ablation rates on the debris-covered Rakhiot Glacier, Pakistan. Z. Gletscherkd. Glazialgeol. 25 (1), 17–32Google Scholar
Maykut, G. A. and Untersteiner, N. 1971. Some results from a time-dependent thermodynamic model of sea ice. J. Geophys. Res. 76 (6), 1550–75CrossRefGoogle Scholar
Meesters, A. and Broeke, M. 1997. Response of the longwave radiation over melting snow and ice to atmospheric warming. J. Glaciol. 43 (143), 66–70CrossRefGoogle Scholar
Meyers, T. P. and Dale, R. F. 1983. Predicting daily insolation with hourly cloud height and coverage. J. Climate Appl. Meteorol. 2, 537–452.0.CO;2>CrossRefGoogle Scholar
Morris, E. M. 1989. Turbulent transfer over snow and ice. J. Hydrol. 105, 205–23CrossRefGoogle Scholar
Morris, E. M., Bader, H.-P. and Weilenmann, P. 1997. Modelling temperature variations in polar snow using DAISY. J. Glaciol. 43, 180–91CrossRefGoogle Scholar
Munro, D. S. 1989. Surface roughness and bulk heat transfer on a glacier: comparison with eddy correlation. J. Glaciol. 35 (121), 343–8CrossRefGoogle Scholar
Munro, D. S. and Davies, J. A. 1978. On fitting the log-linear model to wind speed and temperature profiles over a melting glacier. Bound. Layer Meteorol. 15, 423–37CrossRefGoogle Scholar
Nicolussi, K. 1994. Jahrringe und Massenbilanz. Dendroklimatologische Rekonstruktion der Massenbilanzreihe des Hintereisferners bis zum Jahr 1400 mittels Pinus cembra-Reihen aus den Ötztaler Alpen, Tirol. Z. Gletscherkd. Glazialgeol. 30, 11–52Google Scholar
Oerlemans, J. 1991/92. A model for the surface balance of ice masses: part I. Alpine glaciers. Z. Gletscherkd. Glazialgeol. 27/28, 63–83Google Scholar
Oerlemans, J. 1992. Climate sensitivity of glaciers in southern Norway: application of an energybalance model to Nigardsbreen, Hellstugubreen and Alfotbreen. J. Glaciol. 38 (129), 223–32CrossRefGoogle Scholar
Oerlemans, J. and Fortuin, J. P. F. 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science 258, 115–17CrossRefGoogle ScholarPubMed
Oerlemans, J. and Hoogendoorn, N. C. 1989. Mass-balance gradients and climatic change. J. Glaciol. 35 (121), 399–405CrossRefGoogle Scholar
Oerlemans, J. and Knap, W. H. 1998. A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland. J. Glaciol. 44 (147), 231–8CrossRefGoogle Scholar
Oerlemans, J. and Reichert, B. K. 2000. Relating glacier mass balance to meteorological data by using seasonal sensitivity characteristics. J. Glaciol. 46 (152), 1–6CrossRefGoogle Scholar
Oerlemans, J., Wal, R. S. and Conrads, L. A. 1991/92. A model for the surface balance of ice masses: part II. Application to the Greenland ice sheet. Z. Gletscherkd. Glazialgeol. 27/28, 85–96Google Scholar
Ohmura, A. 1981. Climate and energy balance on Arctic tundra, Axel Heiberg Island, Canadian Arctic Archipelago, spring and summer 1969, 1970 and 1972. Zürcher Geographische Schriften, vol. 3. ETH Zurich, Geographisches Institut
Ohmura, A. 1987. New temperature distribution maps for GreenlandZ. Gletscherkd. Glazialgeol. 23 (1), 1–45Google Scholar
Ohmura, A. and Reeh, N. 1991. New precipitation and accumulation maps for Greenland. J. Glaciol. 37, 140–8CrossRefGoogle Scholar
Ohmura, A., Calanca, P., Wild, M. and Anklin, M. 1999. Precipitation, accumulation and mass balance of the Greenland ice sheet. Z. Gletscherkd. Glazialgeol. 35, 1–20Google Scholar
Pfeffer, W. T., Meier, M. F. and Illangasekare, T. H. 1991. Retention of Greenland runoff by refreezing: implications for projected future sea level change. J. Geophys. Res. 96 (C12), 22 117–24CrossRefGoogle Scholar
Plüss, C. and Ohmura, A. 1997. Longwave radiation on snow-covered mountainous surfaces. J. Appl. Meteorol. 36, 818–24CrossRefGoogle Scholar
Pomeroy, J. W., Gray, D. M. and Landine, P. G. 1993. The prairie blowing snow model: characteristics, validation, operation. J. Hydrol. 144, 165–92CrossRefGoogle Scholar
Prandtl, L. 1942. Führer durch die Ströhmungslehre. Braunschweig, Vieweg u. Sohn
Ranzi, R. and Rossi, R. 1991. Physically based approach to modelling distributed snowmelt. IAHS Publication 205, pp. 141–52
Reeh, N. 1989. Parameterisation of melt rate and surface temperature on the Greenland ice sheet. Polarforschung 59 (3), 113–28Google Scholar
Reijmer, C. H., Knap, W. H. and Oerlemans, J. 1999. The surface albedo of the Vatnajökull ice cap, Iceland: a comparison between satellite-derived and ground-based measurements. Bound. Layer Meteorol. 92 (1), 125–44CrossRefGoogle Scholar
Rouse, W. R. 1987. Examples of enhanced global solar radiation through multiple reflection from an ice-covered Arctic Sea. J. Climate Appl. Meteorol. 26, 670–42.0.CO;2>CrossRefGoogle Scholar
Royer, J.-F. 2000. Land surface processes and hydrology. In Mote, P. and O'Neill, A., eds., Numerical Modeling of the Global Atmosphere in the Climate System. NATO Science Series vol. 550. Dordrecht, Kluwer Academic Press, pp. 321–53
Salby, M. L. 1992. The atmosphere. In Trenberth, K. E., ed., Climate System Modeling. Cambridge University Press, pp. 53–115
Sashegyi, K. D. and Madala, R. V. 1994. Initial and boundary conditions. In Pielke, R. A. and Pearce, N. P., eds., Mesoscale Modeling of the Atmosphere. Meteorological Monographs vol. 25. American Meteorological Society, pp. 1–12
Schmidt, R. A. 1982. Vertical profiles of wind speed, snow concentration, and humidity in blowing snow. Bound. Layer Meteorol. 23, 223–46CrossRefGoogle Scholar
Smeets, C. J. P. P., Duynkerke, P. G. and Vugts, H. F. 1998. Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part I: A combination of katabatic and large-scale forcing. Bound. Layer Meteorol. 87, 117–45CrossRefGoogle Scholar
Smeets, C. J. P. P., Duynkerke, P. G. and Vugts, H. F. 1999. Observed wind profiles and turbulence fluxes over an ice surface with changing surface roughness. Bound. Layer Meteorol. 92, 101–23CrossRefGoogle Scholar
Steinacker, R. 1979. Rückrechnung des Massenhaushaltes des Hintereisferners mit Hilfe von Klimadaten. Z. Gletscherkd. Glazialgeol. 15, 101–4Google Scholar
Stroeve, J., Nolin, A. and Steffen, K. 1997. Comparison of AVHRR-derived and in situ surface albedo over the Greenland ice sheet. Remote Sensing Environ. 62, 262–76CrossRefGoogle Scholar
Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. Dordrecht, Kluwer Academic Publishers
Thuburn, J., 2000. Use of simplified atmospheric models. In Mote, P. and O'Neill, A., eds., Numerical Modeling of the Global Atmosphere in the Climate System. NATO Science Series vol. 550. Dordrecht, Kluwer Academic Press, pp. 105–17
Broeke, M. R. 1996. Characteristics of the lower ablation zone of the West Greenland ice sheet for energy-balance modelling. Ann. Glaciol. 23, 160–6CrossRefGoogle Scholar
Broeke, M. R. 1997. A bulk model of the atmospheric boundary layer for inclusion in mass balance models of the Greenland ice sheet. Z. Gletscherkd. Glazialgeol. 33 (1), 73–94Google Scholar
Van Lipzig, P. M. 1999. The surface mass balance of the Antarctic ice sheet. Ph.D. thesis, University of Utrecht, The Netherlands
Wal., R. S. W. 1996. Mass-balance modelling of the Greenland ice sheet: a comparison of energy-balance and a degree-day model. Ann. Glaciol. 23, 36–45Google Scholar
Wal., R. S. W. and Oerlemans, J. 1994. An energy balance model for the Greenland ice sheet. Global & Planetary Change 9 (1/2), 115–31Google Scholar
Wal, R. S. W., Wild, M. and Wolde, J. R. 2001. Short-term volume changes of the Greenland ice sheet in response to doubled CO2 conditions. Tellus 538, 94–102Google Scholar
Vaughan, D. G., Bamber, J. L., Giovinetto, M., Russel, J. and Cooper, A. P. R. 1999. Reassessment of net surface mass balance in Antarctica. J. Climate 12, 933–462.0.CO;2>CrossRefGoogle Scholar
Vincent, C. and Vallon, M. 1997. Meteorological controls on glacier mass balance: empirical relations suggested by measurements on glacier de Sarennes, France. J. Glaciol. 43 (143), 131–7CrossRefGoogle Scholar
Walland., D. J. and Simmonds, I. 1996. Subgrid scale topography and the simulation of northern hemisphere snow cover. Int. J. Climatol. 16, 961–823.0.CO;2-R>CrossRefGoogle Scholar
Warren, S. G. 1982. Optical properties of snow. Rev. Geophys. Space Phys. 20 (1), 67–89CrossRefGoogle Scholar
WCRP. 2000. Proceedings of the Second WCRP International Conference on Reanalyses. WMO/TD-no. 985, 452 pp
Wendler, G., Eaton, F. D. and Ohtake, T. 1981. Multiple reflection effects on irradiance in the presence of Arctic stratus clouds. J. Geophys. Res. 86 (C3), 2049–57CrossRefGoogle Scholar
Wild, M. and Ohmura, A. 2000. Changes in mass balance of the polar ice sheets and sea-level under greenhouse warming as projected in high resolution GCM simulations. Ann. Glaciol. 30, 197–203CrossRefGoogle Scholar
Wiscombe, W. J. and Warren, S. G. 1980. A model for the spectral albedo of snow. I: Pure snow.J. Atmos. Sci. 37, 2712–332.0.CO;2>CrossRefGoogle Scholar
Zuo, Z. and Oerlemans, J. 1996. Modelling albedo and specific balance of the Greenland ice sheet: calculations for the S⊘ndre Str⊘mfjord transect. J. Glaciol. 42, 305–17CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×