Skip to main content

Advertisement

Log in

Estimation of Human Norovirus Infectivity from Environmental Water Samples by In Situ Capture RT-qPCR Method

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Human noroviruses (HuNoVs) are highly infectious viruses for which water is an important medium of transmission. In this study, we explored a new in situ capture RT-qPCR (ISC-RT-qPCR) methodology to estimate the infectivity of HuNoV in environmental water samples. This assay was based on capturing encapsidated HuNoV by viral receptors, followed by in situ amplification of the captured viral genomes by RT-qPCR. We demonstrated that the ISC-RT-qPCR did not capture and enable signal amplification of heat-denatured Tulane Virus (TV) and HuNoVs. We further demonstrated that the sensitivity of ISC-RT-qPCR was equal or better than that of conventional RT-qPCR procedures for the detection of HuNoV GI and GII. We then utilized the ISC-RT-qPCR to detect HuNoV in environmental water samples for comparison against that from a conventional RT-qPCR procedure. TV was used as a process control virus. While complete inhibition of TV genomic signal was observed in 27% of samples tested by RT-qPCR, no inhibition of TV genomic signal was observed by ISC-RT-qPCR. From 72 samples tested positive for HuNoV GI signal by RT-qPCR, only 20 (27.8%) of these samples tested positive by ISC-RT-qPCR, suggesting that 72.2% of RT-qPCR-positive samples were unlikely to be infectious. From 16 samples tested positive for HuNoV GII signal by RT-qPCR, only one of these samples tested positive by ISC-RT-qPCR. Five samples that had initially tested negative for HuNoV GII signal by RT-qPCR, was tested as positive by ISC-RT-qPCR. Overall, ISC-RT-qPCR method provided an alternative assay to estimate infectivity of HuNoV in environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atmar, R. L., Opekun, A. R., Gilger, M. A., Estes, M. K., Crawford, S. E., Neill, F. H., et al. (2008). Norwalk virus shedding after experimental human infection. Emerging Infectious Diseases Journal, 14(10), 1553–1557. doi:10.3201/eid1410.080117.

    Article  Google Scholar 

  • Baert, L., Wobus, C. E., Van Coillie, E., Thackray, L. B., Debevere, J., & Uyttendaele, M. (2008). Detection of murine norovirus 1 by using plaque assay, transfection assay, and real-time reverse transcription-PCR before and after heat exposure. Applied and Environment Microbiology, 74(2), 543–546. doi:10.1128/AEM.01039-07.

    Article  CAS  Google Scholar 

  • Cannon, J. L., & Vinje, J. (2008). Histo-blood group antigen assay for detecting noroviruses in water. Applied and Environmental Microbiology, 74(21), 6818–6819. doi:10.1128/AEM.01302-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease and Prevention. (2011). Surveillance for foodborne disease outbreaks–United States, 2008. MMWR Morbidity and Mortality Weekly Report, 60, 1197–1202.

    Google Scholar 

  • Cooley, M. B., Quinones, B., Oryang, D., Mandrell, R. E., & Gorski, L. (2014). Prevalence of shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region. Frontiers in Cellular and Infection Microbiology, 4, 30. doi:10.3389/fcimb.2014.00030.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corsi, S. R., Borchardt, M. A., Spencer, S. K., Hughes, P. E., & Baldwin, A. K. (2014). Human and bovine viruses in the Milwaukee River watershed: Hydrologically relevant representation and relations with environmental variables. Science of the Total Environment, 490, 849–860. doi:10.1016/j.scitotenv.2014.05.072.

    Article  CAS  PubMed  Google Scholar 

  • Dancho, B. A., Chen, H., & Kingsley, D. H. (2012). Discrimination between infectious and non-infectious human norovirus using porcine gastric mucin. International Journal of Food Microbiology, 155(3), 222–226. doi:10.1016/j.ijfoodmicro.2012.02.010.

    Article  CAS  PubMed  Google Scholar 

  • Ettayebi, K., Crawford, S. E., Murakami, K., Broughman, J. R., Karandikar, U., Tenge, V. R., et al. (2016). Replication of human noroviruses in stem cell-derived human enteroids. Science, 353(6306), 1387–1393. doi:10.1126/science.aaf5211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farkas, T., Sestak, K., Wei, C., & Jiang, X. (2008). Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. Journal of Virology, 82(11), 5408–5416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentry, J., Vinje, J., Guadagnoli, D., & Lipp, E. K. (2009). Norovirus distribution within an estuarine environment. Applied and Environmental Microbiology, 75(17), 5474–5480. doi:10.1128/AEM.00111-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentry-Shields, J., & Jaykus, L. (2015). Comparison of process control viruses for use in extraction and detection of human norovirus from food matrices. Food Research International, 77, 320–325.

    Article  CAS  Google Scholar 

  • Haramoto, E., Katayama, H., & Ohgaki, S. (2004). Detection of noroviruses in tap water in Japan by means of a new method for concentrating enteric viruses in large volumes of freshwater. Applied and Environmental Microbiology, 70(4), 2154–2160. doi:10.1128/AEM.70.4.2154-2160.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata, A., Katayama, H., Kitajima, M., Visvanathan, C., Nol, C., & Furumai, H. (2011). Validation of internal controls for extraction and amplification of nucleic acids from enteric viruses in water samples. Applied and Environmental Microbiology, 77(13), 4336–4343. doi:10.1128/AEM.00077-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, X. Q., Cheng, L., Zhang, D. Y., Xie, X. M., Wang, D. H., & Wang, Z. (2011). One-year monthly survey of rotavirus, astrovirus and norovirus in three sewage treatment plants (STPs) in Beijing, China and associated health risk assessment. Water Science and Technology, 64(6), 1202–1210.

    Article  CAS  PubMed  Google Scholar 

  • Hennechart-Collette, C., Martin-Latil, S., Guillier, L., & Perelle, S. (2015). Determination of which virus to use as a process control when testing for the presence of hepatitis A virus and norovirus in food and water. International Journal of Food Microbiology, 202, 57–65. doi:10.1016/j.ijfoodmicro.2015.02.029.

    Article  PubMed  Google Scholar 

  • Hutson, A. M., Atmar, R. L., Graham, D. Y., & Estes, M. K. (2002). Norwalk virus infection and disease is associated with ABO histo-blood group type. The Journal of Infectious Diseases, 185(9), 1335–1337. doi:10.1086/339883.

    Article  PubMed  Google Scholar 

  • Katayama, H., Shimasaki, A., & Ohgaki, S. (2002). Development of a virus concentration method and its application to detection of enterovirus and norwalk virus from coastal seawater. Applied and Environment Microbiology, 68(3), 1033–1039. doi:10.1128/AEM.68.3.1033-1039.2002.

    Article  CAS  Google Scholar 

  • Kitajima, M., Haramoto, E., Phanuwan, C., Katayama, H., & Ohgaki, S. (2009). Detection of genogroup IV norovirus in wastewater and river water in Japan. Letters in Applied Microbiology, 49(5), 655–658. doi:10.1111/j.1472-765X.2009.02718.x.

    Article  CAS  PubMed  Google Scholar 

  • Kittigul, L., Panjangampatthana, A., Pombubpa, K., Taweekate, Y., Pungchitton, S., Diraphat, P., et al. (2012). Detection and genetic characterization of norovirus in environmental water samples in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 43(2), 323–332.

    CAS  PubMed  Google Scholar 

  • Kiulia, N. M., Netshikweta, R., Page, N. A., Van Zyl, W. B., Kiraithe, M. M., Nyachieo, A., et al. (2010). The detection of enteric viruses in selected urban and rural river water and sewage in Kenya, with special reference to rotaviruses. Journal of Applied Microbiology, 109(3), 818–828. doi:10.1111/j.1365-2672.2010.04710.x.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C., & Kim, S. J. (2008). The genetic diversity of human noroviruses detected in river water in Korea. Water Research, 42(17), 4477–4484. doi:10.1016/j.watres.2008.08.003.

    Article  CAS  PubMed  Google Scholar 

  • Leifels, M., Jurzik, L., Wilhelm, M., & Hamza, I. A. (2015). Use of ethidium monoazide and propidium monoazide to determine viral infectivity upon inactivation by heat, UV-exposure and chlorine. International Journal of Hygiene and Environmental Health, 218(8), 686–693. doi:10.1016/j.ijheh.2015.02.003.

    Article  CAS  PubMed  Google Scholar 

  • Lenaker, P. L., Corsi, S. R., Borchardt, M. A., Spencer, S. K., Baldwin, A. K., & Lutz, M. A. (2017). Hydrologic, land cover, and seasonal patterns of waterborne pathogens in Great Lakes tributaries. Water Research, 113, 11–21. doi:10.1016/j.watres.2017.01.060.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Huang, R., & Chen, H. (2017). Evaluation of assays to quantify infectious human norovirus for heat and high-pressure inactivation studies using tulane virus. Food and Environmental Virology. doi:10.1007/s12560-017-9288-2.

    PubMed Central  Google Scholar 

  • Lodder, W. J., & de Roda Husman, A. M. (2005). Presence of noroviruses and other enteric viruses in sewage and surface waters in The Netherlands. Applied and Environment Microbiology, 71(3), 1453–1461. doi:10.1128/AEM.71.3.1453-1461.2005.

    Article  CAS  Google Scholar 

  • Love, D. C., Rodriguez, R. A., Gibbons, C. D., Griffith, J. F., Yu, Q., Stewart, J. R., et al. (2014). Human viruses and viral indicators in marine water at two recreational beaches in Southern California, USA. Journal of Water and Health, 12(1), 136–150. doi:10.2166/wh.2013.078.

    Article  PubMed  Google Scholar 

  • Mans, J., Netshikweta, R., Magwalivha, M., Van Zyl, W. B., & Taylor, M. B. (2013). Diverse norovirus genotypes identified in sewage-polluted river water in South Africa. Epidemiology and Infection, 141(2), 303–313. doi:10.1017/S0950268812000490.

    Article  CAS  PubMed  Google Scholar 

  • Marionneau, S., Ruvoen, N., Le Moullac-Vaidye, B., Clement, M., Cailleau-Thomas, A., Ruiz-Palacois, G., et al. (2002). Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology, 122(7), 1967–1977. doi:10.1053/gast.2002.33661.

    Article  CAS  PubMed  Google Scholar 

  • Nowak, P., Topping, J. R., Bellamy, K., Fotheringham, V., Gray, J. J., Golding, J. P., et al. (2011). Virolysis of feline calicivirus and human GII.4 norovirus following chlorine exposure under standardized light soil disinfection conditions. Journal of Food Protection, 74(12), 2113–2118. doi:10.4315/0362-028X.JFP-11-087.

    Article  CAS  PubMed  Google Scholar 

  • Randazzo, W., Lopez-Galvez, F., Allende, A., Aznar, R., & Sanchez, G. (2016). Evaluation of viability PCR performance for assessing norovirus infectivity in fresh-cut vegetables and irrigation water. International Journal of Food Microbiology, 229, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Seitz, S. R., Leon, J. S., Schwab, K. J., Lyon, G. M., Dowd, M., McDaniels, M., et al. (2011). Norovirus infectivity in humans and persistence in water. Applied and Environmental Microbiology, 77(19), 6884–6888. doi:10.1128/AEM.05806-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, M., & Jiang, X. (2010). Norovirus gastroenteritis, carbohydrate receptors, and animal models. PLoS Pathogens, 6(8), e1000983. doi:10.1371/journal.ppat.1000983.

    Article  PubMed  PubMed Central  Google Scholar 

  • Teixeira, D. M., Spada, P. K., Morais, L. L., Fumian, T. M., Lima, I. C., Oliveira, D. S., et al. (2017). Norovirus genogroups I and II in environmental water samples from Belem city, Northern Brazil. Journal of Water and Health, 15(1), 163–174. doi:10.2166/wh.2016.275.

    Article  PubMed  Google Scholar 

  • Tian, P., Brandl, M., & Mandrell, R. (2005). Porcine gastric mucin binds to recombinant norovirus particles and competitively inhibits their binding to histo-blood group antigens and Caco-2 cells. Letters in Applied Microbiology, 41(4), 315–320. doi:10.1111/j.1472-765X.2005.01775.x.

    Article  CAS  PubMed  Google Scholar 

  • Tian, P., Engelbrektson, A., & Mandrell, R. (2008). Two-log increase in sensitivity for detection of norovirus in complex samples by concentration with porcine gastric mucin conjugated to magnetic beads. Applied and Environmental Microbiology, 74(14), 4271–4276. doi:10.1128/AEM.00539-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, P., Yang, D., & Mandrell, R. (2011). A simple method to recover Norovirus from fresh produce with large sample size by using histo-blood group antigen-conjugated to magnetic beads in a recirculating affinity magnetic separation system (RCAMS). International Journal of Food Microbiology, 147(3), 223–227. doi:10.1016/j.ijfoodmicro.2011.04.013.

    Article  PubMed  Google Scholar 

  • Tian, P., Yang, D., Pan, L., & Mandrell, R. (2012). Application of a receptor-binding capture quantitative reverse transcription-PCR assay to concentrate human norovirus from sewage and to study the distribution and stability of the virus. Applied and Environment Microbiology, 78(2), 429–436. doi:10.1128/AEM.06875-11.

    Article  CAS  Google Scholar 

  • Tian, P., Yang, D., Quigley, C., Chou, M., & Jiang, X. (2013). Inactivation of the Tulane virus, a novel surrogate for the human norovirus. Journal of Food Protection, 76(4), 712–718. doi:10.4315/0362-028X.JFP-12-361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Victoria, M., Rigotto, C., Moresco, V., de Abreu Correa, A., Kolesnikovas, C., Leite, J. P., et al. (2010). Assessment of norovirus contamination in environmental samples from Florianopolis City, Southern Brazil. Journal of Applied Microbiology, 109(1), 231–238. doi:10.1111/j.1365-2672.2009.04646.x.

    CAS  PubMed  Google Scholar 

  • Wang, D., & Tian, P. (2014). Inactivation conditions for human norovirus measured by an in situ capture-qRT-PCR method. International Journal of Food Microbiology, 172, 76–82. doi:10.1016/j.ijfoodmicro.2013.11.027.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Xu, S., Yang, D., Young, G. M., & Tian, P. (2014). New in situ capture quantitative (real-time) reverse transcription-PCR method as an alternative approach for determining inactivation of Tulane virus. Applied and Environmental Microbiology, 80(7), 2120–2124. doi:10.1128/AEM.04036-13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, S., Wang, D., Yang, D., Liu, H., & Tian, P. (2015). Alternative methods to determine infectivity of Tulane virus: A surrogate for human nororvirus. Food Microbiology, 48, 22–27. doi:10.1016/j.fm.2014.12.004.

    Article  CAS  PubMed  Google Scholar 

  • Xue, C., Fu, Y., Zhu, W., Fei, Y., Zhu, L., Zhang, H., et al. (2014). An outbreak of acute norovirus gastroenteritis in a boarding school in Shanghai: A retrospective cohort study. BMC Public Health, 14, 1092. doi:10.1186/1471-2458-14-1092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Tian, Z., Li, Q., Tian, P., Wu, Q., Wang, D., et al. (2017). In situ capture RT-qPCR: A new simple and sensitive method to detect human norovirus in oysters. Frontiers in Microbiology, 8, 554. doi:10.3389/fmicb.2017.00554.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by USDA Agricultural Research Service CRIS project 5325-42000-050-00D and Grant 31301475 from National Natural Science Foundation of China. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, P., Yang, D., Shan, L. et al. Estimation of Human Norovirus Infectivity from Environmental Water Samples by In Situ Capture RT-qPCR Method. Food Environ Virol 10, 29–38 (2018). https://doi.org/10.1007/s12560-017-9317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-017-9317-1

Keywords

Navigation