Skip to main content
Log in

A Non-lethal Water-based Removal-reapplication Technique for Behavioral Analysis of Cuticular Compounds of Ants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Interspecific relationships among insects are often mediated by chemical cues, including non-volatile cuticular compounds. Most of these compounds are hydrocarbons that necessitate the use of solvents for their extraction, identification, and manipulation during behavioral assays. The toxicity of these solvents often precludes the removal and reapplication of hydrocarbons from and to live insects. As a consequence, dummies often are used in behavioral assays, but their passivity can bias the behavior of the responding insects. To overcome these limitations, we propose a method where cuticular compounds are extracted from live ants by placing them into glass vials half-filled with tepid water (ca. 34°C) and vigorously shaking the vials to form an emulsion whose supernatant can be analyzed and/or reapplied to other ants. We demonstrate that cuticular compounds can be extracted from workers of the red fire ant, Solenopsis saevissima, and reapplied to the cuticle of workers from a sympatric species, Camponotus blandus (both Hymenoptera: Formicidae), while keeping the ants alive. Gas chromatographic-mass spectrometric analysis and behavioral assays were used to confirm the successful transfer of the behaviorally active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akino, T., Yamamura, K., Wakamura, S., and Yamaoka, R. 2004. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl. Entomol. Zool. 39:381–387.

    Article  CAS  Google Scholar 

  • Andrews, E. A. 1911. Observation on termites in Jamaica. J. Anim. Behav. 1:193–228.

    Article  Google Scholar 

  • Bagnères, A. G. and Morgan, E. D. 1990. A simple method for analysis of insect cuticular hydrocarbons. J. Chem. Ecol. 16:3263–3276.

    Article  Google Scholar 

  • Blum, M. S., Murray, S., Walker, J. R., Callahan, P. S., and Novak, A. F. 1958. Chemical, insecticidal, and antibiotic properties of fire ant venom. Science 128:306–307.

    Article  PubMed  CAS  Google Scholar 

  • Brand, J. M., Blum, M. S., Fales, H. M., and MacConnell, J. G. 1972. Fire ant venoms: comparative analyses of alkaloidal components. Toxicon 10:259–271.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L. and Fadamiro, H. Y. 2009a. Re-investigation of venom chemistry of Solenopsis fire ants. I. Identification of novel alkaloids in S. richteri. Toxicon 53:469–478.

    Article  CAS  Google Scholar 

  • Chen, L. and Fadamiro, H. Y. 2009b. Re-investigation of venom chemistry of Solenopsis fire ants. II. Identification of novel alkaloids in S. invicta. Toxicon 53:479–486.

    Article  CAS  Google Scholar 

  • Colazza, S., Aquila, G., De Pasquale, C., Peri, E., and Millar, J. 2007. The egg parasitoid Trissolcus basalis uses n-nonadecane, a cuticular hydrocarbon from its stink bug host Nezara viridula, to discriminate between female and male hosts. J. Chem. Ecol. 33:1405–1420.

    Article  PubMed  CAS  Google Scholar 

  • Dani, F. R., Jones, G. R., Corsi, S., Beard, R., Pradella, D., and Turillazzi, S. 2005. Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem. Senses 30:477–489.

    Article  PubMed  CAS  Google Scholar 

  • Dejean, A., Corbara, B., and Oliva-Rivera, J. 1990. Mise en évidence d’une forme d’apprentissage dans le comportement de capture des proies chez Pachycondyla (=Neoponera) villosa (Formicidae, Ponerinae). Behaviour 115:175–187.

    Article  Google Scholar 

  • Fresneau, D. 1980. Fermeture des sociétés et marquage territorial chez les fourmis ponérines du genre Neoponera. Biol Ecol Méditerr 7:205–206.

    Google Scholar 

  • Gamboa, G. J., Reeve, H. K., and Holmes, W. G. 1991. Conceptual issues and methodology in kin recognition research, a critical discussion. Ethol. 88:109–127.

    Article  Google Scholar 

  • Haight, K. L. 2006. Defensiveness of the fire ant, Solenopsis invicta, is increased during colony rafting. Insect. Soc. 53:32–36.

    Article  Google Scholar 

  • Henderson, G., Andersen, J. F., Phillips, J. K., and Jeanne, R. L. 1990. Internest aggression and identification of possible nestmate discrimination pheromones in polygynous ant Formica montana. J. Chem. Ecol. 16:2217–2228.

    Article  CAS  Google Scholar 

  • Hölldobler, B. and Wilson, B. 1990. The ants. Harvard University Press, Cambridge

    Google Scholar 

  • Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., and Case, T. J. 2002. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33:181–233.

    Article  Google Scholar 

  • Lenoir, A., D’Ettorre, P., Errard, C., and Hefetz, A. 2001. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46:573–599.

    Article  PubMed  CAS  Google Scholar 

  • MacConnell, J. G., Blum, M. S., and Fales, H. M. 1971. The chemistry of fire ant venom. Tetrahedron 27:1129–1139.

    Article  CAS  Google Scholar 

  • Monnin, T., Malosse, C., and Peeters, C. 1998. Solid-phase microextraction and cuticular hydrocarbon differences related to reproductive activity in queenless ant Dinoponera quadriceps. J. Chem. Ecol. 24:473–490.

    Article  CAS  Google Scholar 

  • Morgan, E. D. 1990. Preparation of small samples for chromatography of insect pheromones. Anal. Chim. Acta 236:227–235.

    Article  CAS  Google Scholar 

  • Morrison, L. W. 1998. A review of Bahamian ant (Hymenoptera: Formicidae) biogeography. J. Biogeography 25:561–571.

    Article  Google Scholar 

  • Nelson, D. R., Fatland, C. L., Howard, R. W., McDaniel, C. A., and Blomquist, G. J. 1980. Re-analysis of the cuticular methylalkanes of Solenopsis invicta and S. richteri. Insect Biochem. 10:409–418.

    Article  CAS  Google Scholar 

  • Obin, M. S. and Vander Meer, R. K. 1985. Gaster flagging by fire ants (Solenopsis spp.): functional significance of venom dispersal behavior. J. Chem. Ecol. 11:1757–1768.

    Article  CAS  Google Scholar 

  • Orivel, J. and Dejean, A. 2002. Ant activity rhythms in a pioneer vegetal formation of French Guiana (Hymenoptera: Formicidae). Sociobiology 39:65–76.

    Google Scholar 

  • Roulston, T. H., Buczkowski, G., and Silverman, J. 2003. Nestmate discrimination in ants: effect of bioassay on aggressive behavior. Insect. Soc. 50:151–159.

    Article  Google Scholar 

  • Roux, O., Gers, C., Tene-Ghomsi, J. N., Arvanitakis, L., Bordat, D., and Legal, L. 2007. Chemical characterization of contact semiochemicals for host-recognition and host-acceptance by the specialist parasitoid Cotesia plutellae (Kurdjumov). Chemoecol. 17:13–18.

    Article  CAS  Google Scholar 

  • Ruther, J., Sieben, S., and Schricker, B. 1998. Role of cuticular lipids in nestmate recognition of the European hornet Vespa crabro L. (Hymenoptera, Vespidae). Insect Soc. 45:169–179.

    Article  Google Scholar 

  • Ruther, J., Sieben, S., and Schricker, B. 2002. Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet. Naturwissenschaften 89:111–114.

    Article  PubMed  CAS  Google Scholar 

  • Tentschert, J., Bestmann, H. J., and Heinze, J. 2002. Cuticular compounds of workers and queens in two Leptothorax ant species—a comparison of results obtained by solvent extraction, solid sampling, and SPME. Chemoecol. 12:15–21.

    Article  CAS  Google Scholar 

  • Turillazzi, S., Sledge, M. F., and Moneti, G. 1998. Use of a simple method for sampling cuticular hydrocarbons from live social wasps. Ethol. Ecol. Evol. 10:293–297.

    Google Scholar 

  • Vander Meer, R. K. and Morel, L. 1998. Nestmate recognition in ants, pp. 79–103, in R. K. Vander Meer, M. D. Breed, K. E. Espelie, and M. L. Winston (eds.). Pheromone communication in social insects: Ants, wasps, bees, and termites. Westview, Boulder.

    Google Scholar 

  • Wagner, D., Tissot, M., Cuevas, W., and Gordon, D. M. 2000. Harvester ants utilize cuticular hydrocarbons in nestmate recognition. J. Chem. Ecol. 26:2245–2257.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Andrea Dejean for proofreading the manuscript, to Antoine Steven from the Institut Pasteur de la Guyane for allowing us the use of a GC-MS, to Felipe Ramon-Portugal for technical assistance, and to the staff of the Laboratoire Environnement de Petit Saut for field accommodations. Two anonymous reviewers are thanked for their helpful suggestions, which significantly improved the manuscript. Financial support for this study was provided by the Programme Amazonie II of the French Centre National de la Recherche Scientifique (project 2ID) and the Programme Convergence 2007–2013, Région Guyane from the European Community (project DEGA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Roux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, O., Martin, JM., Ghomsi, N.T. et al. A Non-lethal Water-based Removal-reapplication Technique for Behavioral Analysis of Cuticular Compounds of Ants. J Chem Ecol 35, 904–912 (2009). https://doi.org/10.1007/s10886-009-9673-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9673-x

Keywords

Navigation