Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T01:53:14.377Z Has data issue: false hasContentIssue false

A new case of neotropical monodominant forest: Spirotropis longifolia (Leguminosae-Papilionoideae) in French Guiana

Published online by Cambridge University Press:  30 September 2011

Émile Fonty*
Affiliation:
ONF, Direction régionale de la Guyane, F-97300 Cayenne IRD, UMR AMAP, F-34000 Montpellier INRA, UMR EcoFoG, F-97310 Kourou
Jean-François Molino
Affiliation:
IRD, UMR AMAP, F-34000 Montpellier
Marie-Françoise Prévost
Affiliation:
IRD, UMR AMAP, F-97300 Cayenne
Daniel Sabatier*
Affiliation:
IRD, UMR AMAP, F-34000 Montpellier
*
1Corresponding authors. Emails: emile.fonty@free.fr/daniel.sabatier@ird.fr
1Corresponding authors. Emails: emile.fonty@free.fr/daniel.sabatier@ird.fr

Extract

The main interest in studying monodominant forests in the tropics (i.e. single-dominant forest sensu Richards 1996 and Connell & Lowman 1989) is that processes leading to monodominance may highlight mechanisms controlling species diversity (Hart et al. 1989). Among the various cases of monodominant forest (Hart 1990), the most intriguing are the rare ones that stand in contact with a considerably more diverse forest, without apparent environmental boundaries, and for many generations (i.e. type I sensu Connell & Lowman 1989). Rather than a single mechanism, it is likely that this type of monodominance results from a suite of interacting traits (Torti et al. 2001). This has been well illustrated for the neotropical tree Dicymbe corymbosa whose monodominance relies on: (1) ectomycorrhizal symbiosis (Henkel et al. 2002) linked to (2) mast fruiting (Henkel et al. 2005), (3) high seedling survival rate (Henkel et al. 2005, McGuire 2007a, 2007b) and, potentially, (4) slow litter decomposition (Mayor & Henkel 2006, McGuire et al. 2010), moreover, (5) the reiterative habit of D. corymbosa slows the gap dynamics, and reduces species richness (Woolley et al. 2008). Thus, a comprehensive understanding of monodominance may only emerge from the comparison of many case studies to point out shared mechanisms. Here, we report a new case of a monodominant species: Spirotropis longifolia (DC.) Baill.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BOND, W. J. & MIDGLEY, J. J. 2001. Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution 16:4551.CrossRefGoogle ScholarPubMed
CONNELL, J. H. & LOWMAN, M. D. 1989. Low-diversity tropical rain forests: some possible mechanisms for their existence. American Naturalist 134:88119.CrossRefGoogle Scholar
DAVIS, T. A. W. & RICHARDS, P. W. 1934. The vegetation of Moraballi Creek, British Guiana: an ecological study of a limited area of tropical rain forest. Part II. Journal of Ecology 22:106155.CrossRefGoogle Scholar
DIETZE, M. C. & CLARK, J. S. 2008. Changing the gap dynamics paradigm: Vegetative regeneration control on forest response to disturbance. Ecological Monographs 78:331347.CrossRefGoogle Scholar
GAVIN, D. G. & PEART, D. R. 1999. Vegetative life history of a dominant rain forest canopy tree. Biotropica 31:288294.CrossRefGoogle Scholar
HART, T. B. 1985. The ecology of a single-species-dominant forest and of a mixed forest in Zaire, Africa. Michigan State University, East Lansing. 200 pp.Google Scholar
HART, T. B. 1990. Monospecific dominance in tropical rain forest. Trends in Ecology and Evolution 5:611.CrossRefGoogle Scholar
HART, T. B., HART, J. A. & MURPHY, P. G. 1989. Monodominant and species-rich forests of humid tropics – causes for their co-occurence. American Naturalist 133:613633.CrossRefGoogle Scholar
HENKEL, T. W. 2003. Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. Journal of Tropical Ecology 19:417437.CrossRefGoogle Scholar
HENKEL, T. W., TERBORGH, J. & VILGALYS, R. J. 2002. Ectomycorrhizal fungi and their leguminous hosts in the Pakaraima mountains of Guyana. Mycological Research 106:515531.CrossRefGoogle Scholar
HENKEL, T. W., MAYOR, J. R. & WOOLLEY, L. P. 2005. Mast fruiting and seedling survival of the ectomycorrhizal, monodominant Dicymbe corymbosa (Caesalpiniaceae) in Guyana. New Phytologist 167:543556.CrossRefGoogle ScholarPubMed
KOOP, H. 1987. Vegetative reproduction of tree in some European natural forests. Vegetatio 72:103110.CrossRefGoogle Scholar
KORMANIK, P. P. & MCGRAW, A. C. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. Pp. 3745 in Schenck, N. C. (ed.). Methods and principles of mycorrhizal research. American Pathological Society, Saint-Paul.Google Scholar
LESCURE, J. P. & BOULET, R. 1983. Relationship between soil and vegetation in a tropical rain forest in French Guiana. Biotropica 17:155164.CrossRefGoogle Scholar
MCGUIRE, K. L. 2007a. Recruitment dynamics and ectomycorrhizal colonization of Dicymbe corymbosa, a monodominant tree in the Guiana Shield. Journal of Tropical Ecology 23:297307.CrossRefGoogle Scholar
MCGUIRE, K. L. 2007b. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88:567574.CrossRefGoogle Scholar
MCGUIRE, K. L., ZAK, D. R., EDWARDS, I. P., BLACKWOOD, C. B. & UPCHURCH, R. 2010. Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest. Oecologia 164:785795.CrossRefGoogle Scholar
MAYOR, J. R. & HENKEL, T. W. 2006. Do ectomycorrhizas alter leaf-litter decomposition in monodominant tropical forests of Guyana? New Phytologist 169:579588.CrossRefGoogle ScholarPubMed
MIGEOT, J. & IMBERT, D. 2011. Structural and floristic patterns in tropical swamp forests: a case study from the Pterocarpus officinalis (Jacq.) forest in Guadeloupe, French West Indies. Aquatic Botany 94:18.CrossRefGoogle Scholar
NEGRELLE, R. R. B. 1995. Sprouting after uprooting of canopy trees in the Atlantic rain fall forest of Brazil. Biotropica 27:448454.CrossRefGoogle Scholar
RICHARDS, P. W. 1996. The tropical rain forest. (Second edition). Cambridge University Press, Cambridge. 575 pp.Google Scholar
SABATIER, D., GRIMALDI, M., PRÉVOST, M.-F., GUILLAUME, J., GODRON, M., DOSSO, M. & CURMI, P. 1997. The influence of soil cover organization on the floristic and structural heterogeneity of a Guianian rain forest. Plant Ecology 131:81108.CrossRefGoogle Scholar
SAKAI, A., SAKAI, S. & AIKIYAMA, F. 1997. Do sprouting tree species on erosion-prone sites carry large reserves of resources? Annals of Botany 79:625630.CrossRefGoogle Scholar
STIRTON, C. H. & AYMARD, G. A. 1999. Spirotropis. Pp. 391392 in Steyermark, J. A., Berry, P. E., Yatskievych, K. & Holst, B. K. (eds.). Flora of the Venezuelan Guayana Vol. 5. Missouri Botanical Garden Press, Saint-Louis.Google Scholar
TER STEEGE, H., SABATIER, D., CASTELLANOS, H., VAN ANDEL, T. R., DUIVENVOORDEN, J., DE OLIVEIRA, A. A., EK, R., LILWAH, R., MAAS, P. & MORI, S. 2000. An analysis of the floristic composition and diversity of Amazonian forest including those of the Guiana Shield. Journal of Tropical Ecology 16:801828.CrossRefGoogle Scholar
TORTI, S. D., COLEY, P. D. & KURSAR, T. A. 2001. Causes and consequences of monodominance in tropical lowland forests. American Naturalist 157:141153.CrossRefGoogle ScholarPubMed
WOOLLEY, L. P., HENKEL, T. W. & SILLETT, S. C. 2008. Reiteration in the monodominant tropical tree Dicymbe corymbosa (Caesalpiniaceae) and its potential adaptive significance. Biotropica 40:3243.CrossRefGoogle Scholar
ZAGT, R. J., MALTA, E.-J. & RIJKS, M. H. 1997. Stem sprouting of the Dicymbe altsonii in the tropical rainforest of Guyana: impact of soil type and potential for regeneration. Pp. 5572 in Zagt, R. J. (ed.). Tree demography in the tropical rainforest of Guyana. Tropenbos Foundation, Wageningen.Google Scholar