Skip to main content
Log in

Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The high spatial variability of soil respiration in tropical rainforests is well evaluated, but influences of biotic factors are not clearly understood. This study underlines the influence of tree species characteristics on soil respiration across a 16-monospecific plot design in a tropical plantation of French Guiana. A large variability of soil CO2 fluxes was observed among plots (i.e. 2.8 to 6.8 μmol m−2 s−1) with the ranking being constant across seasons. There were no significant relationships between soil respiration and soil moisture or soil temperature, neither spatially, nor seasonally. The variability of soil respiration was mainly explained by quantitative factors such as leaf litterfall and basal area. Surprisingly, no significant relationship was observed between soil respiration and root biomass. However, the influence of substrate quality was revealed by a strong relationship between soil respiration and litterfall P (and litterfall N, to a lesser extent).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adachi M, Bekku YS, Rashidah W, Okuda T, Koizumi H (2006) Differences in soil respiration between different tropical ecosystems. Appl Soil Ecol 34:258–265 doi:10.1016/j.apsoil.2006.01.006

    Article  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449 doi:10.2307/3546886

    Article  Google Scholar 

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–253 doi:10.1051/forest:2002020

    Article  Google Scholar 

  • Bain WG, Hutyra L, Patterson DC, Bright AV, Daube BC, Munger JW, Wofsy SC (2005) Wind-induced error in the measurement of soil respiration using closed dynamic chambers. Agric For Meteorol 131:225–232 doi:10.1016/j.agrformet.2005.06.004

    Article  Google Scholar 

  • Bauhus J, Pare D, Cote L (1998) Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol Biochem 30:1077–1089 doi:10.1016/S0038-0717(97)00213-7

    Article  CAS  Google Scholar 

  • Betson NR, Göttlicher SG, Hall M, Wallin G, Högberg P (2007) No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest. Tree Physiol 27:749–756

    PubMed  CAS  Google Scholar 

  • Bhupinderpal S, Nordgren A, Lofvenius MO, Hogberg MN, Mellander PE, Hogberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296 doi:10.1046/j.1365-3040.2003.01053.x

    Article  Google Scholar 

  • Binkley D, Giardina CP (1998) Why do tree species affect soils? The warp and woof of tree–soil interactions. Biogeochemistry 42:86–106 doi:10.1023/A:1005948126251

    Article  Google Scholar 

  • Bonal D, Bosc A, Ponton S, Goret JY, Burban B, Gross P, Bonnefond JM, Elbers J, Longdoz B, Epron D, Guehl JM, Granier A (2008) Severe dry periods are associated with higher net ecosystem carbon storage in the Neotropical rainforest of French Guiana. Glob Chang Biol 14:1917–1933 doi:10.1111/j.1365-2486.2008.01610.x

    Article  Google Scholar 

  • Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993) Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperature mixed hardwood forest. Can J For Res 23:1402–1407 doi:10.1139/x93-177

    Article  Google Scholar 

  • Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148:650–659 doi:10.1007/s00442-006-0402-7

    Article  PubMed  Google Scholar 

  • Bruggemann N, Rosenkranz P, Papen H, Pilegaard K, Butterbach-Bahl K (2005) Pure stands of temperate forest tree species modify soil respiration and N turnover. Biogeosciences Discussions 2:303–331

    Article  Google Scholar 

  • Catovsky S, Bradford MA, Hector A (2002) Biodiversity and ecosystem productivity: implications for carbon storage. Oikos 97:443–448 doi:10.1034/j.1600-0706.2002.970315.x

    Article  CAS  Google Scholar 

  • Cavelier J, Wright SJ, Santamaria J (1999) Effects of irrigation on litterfall, fine root biomass and production in a semideciduous lowland forest in Panama. Plant Soil 211:207–213 doi:10.1023/A:1004686204235

    Article  CAS  Google Scholar 

  • Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, dos Santos J, Araujo AC, Kruijt B, Nobre AD, Trumbore SE (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:S72–S88 doi:10.1890/01-6012

    Article  Google Scholar 

  • Chung HG, Zak DR, Reich PB, Ellsworth DS (2007) Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob Chang Biol 13:980–989 doi:10.1111/j.1365-2486.2007.01313.x

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schmidt SK (2002) Phosphorus limitation of microbial processes in moist tropical forests: evidence from short-term laboratory incubations and field studies. Ecosystems (N Y, Print) 5:680–691

    CAS  Google Scholar 

  • Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66 doi:10.1016/S0169-5347(00)88978-8

    Article  Google Scholar 

  • Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho JEM (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69 doi:10.1023/A:1006204113917

    Article  CAS  Google Scholar 

  • Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Lawg BE, Luoh Y, Pregitzer K, Randolph JC, Zak D (2002) Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agric For Meteorol 113:39–51 doi:10.1016/S0168-1923(02)00101-6

    Article  Google Scholar 

  • Eckstein RL, Karlsson PS, Weih M (1999) Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate–arctic regions. New Phytol 143:177–189 doi:10.1046/j.1469-8137.1999.00429.x

    Article  Google Scholar 

  • Epron D, Farque L, Lucot E, Badot P-M (1999) Soil CO2 efflux in a beech forest: the contribution of root respiration. Ann Sci For 56:289–295 doi:10.1051/forest:19990403

    Article  Google Scholar 

  • Epron D, Nouvellon Y, Roupsard O, Mouvondy W, Mabiala A, Saint-André L, Joffre R, Jourdan C, Bonnefond JM, Berbigier P, Hamel O (2004) Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo. For Ecol Manag 202:149–160 doi:10.1016/j.foreco.2004.07.019

    Article  Google Scholar 

  • Epron D, Bosc A, Bonal D, Freycon V (2006) Spatial variation of soil respiration across a topographic gradient in a tropical rainforest in French Guiana. J Trop Ecol 22:565–574 doi:10.1017/S0266467406003415

    Article  Google Scholar 

  • Gourlet-Fleury S, Ferry B, Molino JF, Petronelli P, Schmitt L (2004) Experimental plots: key features. In: Gourley-Fleury S, Guehl JM, Laroussinie O (eds) Ecology and management of a Neotropical rainforest. Elsevier, Paris, pp 3–30

    Google Scholar 

  • Gower ST (1987) Relation between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forest: a hypothesis. Biotropica 19:171–175 doi:10.2307/2388741

    Article  Google Scholar 

  • Grace J, Malhi Y, Higuchi N, Meir P (2001) Productivity and carbon fluxes of tropical rain forests. In: Mooney HA, Roy J, Saugier B (eds) Terrestrial global productivity: past, present, and future. Academic, London, pp 401–428

    Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218 doi:10.1146/annurev.ecolsys.36.112904.151932

    Article  Google Scholar 

  • Hättenschwiler S, Aeschlimann B, Bonal B, Coûteaux MM, Roy J (2008) Variation in leaf litter quality among 45 neotropical rainforest tree species and its implications for nutrients recycling. New Phytol 179:165–175 doi:10.1111/j.1469-8137.2008.02438.x

    Article  PubMed  CAS  Google Scholar 

  • Hobbie SE (1992) Effects of plant-species on nutrient cycling. Trends Ecol Evol 7:336–339 doi:10.1016/0169-5347(92)90126-V

    Article  Google Scholar 

  • Hutyra LR, Munger JW, Saleska SR, Gottlieb E, Daube BC, Dunn AL, Amaral DF, De Camargo PB, Wofsy SC (2007) Seasonal controls on the exchange of carbon and water in an Amazonian rain forest. J Geophys Res 112:G03008 doi:10.1029/2006JG000365

    Article  CAS  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, 881 pp

    Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006, 2nd edn. World Soil Resources Reports 103, FAO, Rome, 128pp

    Google Scholar 

  • Joffre R, Gillon D, Dardenne P, Agneessens R, Biston R (1992) The use of near-infrared reflectance spectroscopy in litter decomposition studies. Ann Sci For 49:481–488 doi:10.1051/forest:19920504

    Article  Google Scholar 

  • Jonard M, Andre F, Jonard F, Mouton N, Proces P, Ponette Q (2007) Soil carbon dioxide efflux in pure and mixed stands of oak and beech. Ann Sci For 64:141–150 doi:10.1051/forest:2006098

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Hill PW, Jones DL (2007) Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 290:293–305 doi:10.1007/s11104-006-9162-8

    Article  CAS  Google Scholar 

  • Le Dantec V, Epron D, Dufrêne E (1999) Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. Plant Soil 214:125–132 doi:10.1023/A:1004737909168

    Article  Google Scholar 

  • Metson AJ (1956) Methods of chemical analysis for soil survey samples. DSIR, Wellington

    Google Scholar 

  • Nakane K, Kohno T, Horikoshi T (1996) Root respiration rate before and just after clear-felling in a mature, deciduous, broad-leaved forest. Ecol Res 11:111–119 doi:10.1007/BF02347678

    Article  Google Scholar 

  • Ngao J, Longdoz B, Perrin D, Vincent G, Epron D, Le Dantec V, Soudani K, Aubinet M, Willm F, Granier A (2006) Cross-calibration functions for soil CO2 efflux measurement systems. Ann For Sci 63:477–484 doi:10.1051/forest:2006028

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. In USDA Circular 939. US Government Print Office, Washington, DC, pp 1–19

    Google Scholar 

  • Phillips OL, Hall P, Gentry AH, Sawyer SA, Vasquez R (1994) Dynamics and species richness of tropical rain-forests. Proc Natl Acad Sci USA 91:2805–2809 doi:10.1073/pnas.91.7.2805

    Article  PubMed  CAS  Google Scholar 

  • Pinay G, Barbera P, Carreras-Palou A, Fromin N, Sonie L, Coûteaux MM, Roy J, Philippot L, Lensi R (2007) Impact of atmospheric CO2 and plant life forms on soil microbial activities. Soil Biol Biochem 39:33–42 doi:10.1016/j.soilbio.2006.05.018

    Article  CAS  Google Scholar 

  • Prescott CE (2002) The influence of the forest canopy on nutrient cycling. Tree Physiol 22:1193–1200

    PubMed  CAS  Google Scholar 

  • Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinisto S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grunzweig JM, Reth S, Subke JA, Savage K, Kutsch W, Ostreng G, Ziegler W, Anthoni P, Lindroth A, Hari P (2004) Comparison of different chamber techniques for measuring soil CO2 efflux. Agric For Meteorol 123:159–176 doi:10.1016/j.agrformet.2003.12.001

    Article  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxyde flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    CAS  Google Scholar 

  • Russell AE, Raich JW, Valverde-Barrantes OJ, Fisher RF (2007) Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Sci Soc Am J 71:1389–1397 doi:10.2136/sssaj2006.0069

    Article  CAS  Google Scholar 

  • Saint-André L, M’Bou AT, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte P, Hamel O, Nouvellon Y (2005) Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manag 205:199–214 doi:10.1016/j.foreco.2004.10.006

    Article  Google Scholar 

  • Saleska SR, Miller SD, Matross DM, Goulden ML, Wofsy SC, da Rocha HR, de Camargo PB, Crill P, Daube BC, de Freitas HC, Hutyra L, Keller M, Kirchhoff V, Menton M, Munger JW, Hammond Pyle E, Rice AH, Silva H (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557 doi:10.1126/science.1091165

    Article  PubMed  CAS  Google Scholar 

  • Saleska SR, Didan K, Huete AR, da Rocha HR (2007) Amazon forests green-up during 2005 drought. Science 318:612–612 doi:10.1126/science.1146663

    Article  PubMed  CAS  Google Scholar 

  • Schwendenmann L, Veldkamp E, Brenes T, O’Brien JJ, Mackensen J (2003) Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry 64:111–128 doi:10.1023/A:1024941614919

    Article  CAS  Google Scholar 

  • Soe ARB, Buchmann N (2005) Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiol 25:1427–1436

    PubMed  CAS  Google Scholar 

  • Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J (2004) Soil CO2 efflux in a tropical forest in the central Amazon. Glob Chang Biol 10:601–617 doi:10.1111/j.1529-8817.2003.00761.x

    Article  Google Scholar 

  • Spehn EM, Joshi J, Schmid B, Alphei J, Körner C (2000) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 224:217–230 doi:10.1023/A:1004891807664

    Article  CAS  Google Scholar 

  • Stoyan H, De-Polli H, Böhm S, Robertson GP, Paul EA (2000) Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant Soil 222:303–214 doi:10.1023/A:1004757405147

    Article  Google Scholar 

  • Ter Steege H, Sabatier D, Castellanos H, Van Andel T, Duivenvoorden J, De Oliveira AA, Ek R, Lilwah R, Maas P, Mori S (2000) An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana shield. J Trop Ecol 16:801–828 doi:10.1017/S0266467400001735

    Article  Google Scholar 

  • Valverde-Barrantes OJ (2007) Relationships among litterfall, fine-root growth, and soil respiration for five tropical tree species. Can J For Res 37:1954–1965 doi:10.1139/X07-057

    Article  CAS  Google Scholar 

  • Vitousek PM, Sanford RL Jr (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167 doi:10.1146/annurev.es.17.110186.001033

    Article  Google Scholar 

  • Wright S (1934) The method of path coefficients. Ann Math Stat 5:161–215 doi:10.1214/aoms/1177732676

    Article  Google Scholar 

  • Xu XN, Hirata EJ (2005) Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil 273:279–289 doi:10.1007/s11104-004-8069-5

    Article  CAS  Google Scholar 

  • Xu XK, Inubushi K, Sakamoto K (2006) Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils. Geoderma 136:310–319 doi:10.1016/j.geoderma.2006.03.045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank CIRAD-Forêt for permission to conduct research in the Paracou plantations. This research was supported by a FNS program (ACI PNBC) from the French Ministry of Research. We are grateful to Jean-Yves Goret, Audin Patient and Cyril Douthe and all casual workers for assistance with the field measurements. We also thank J-Y. Goret for providing the meteorological data. Finally, we are grateful for the comments of two anonymous reviewers, which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Ponton.

Additional information

Responsible Editor: Klaus Butterbach-Bahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bréchet, L., Ponton, S., Roy, J. et al. Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots. Plant Soil 319, 235–246 (2009). https://doi.org/10.1007/s11104-008-9866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9866-z

Keywords

Navigation