Skip to main content

Advertisement

Log in

Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves)

  • Multi-Stressors in Freshwater and Transitional Environments: from Legacy Pollutants to Emerging Ones
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Each year, 5 to 10 million tons of plastic waste is dumped in the oceans via freshwaters and accumulated in huge oceanic gyres. Under the effect of several abiotic factors, macro plastic wastes (or plastic wastes with macro sizes) are fractionated into microplastics (MP) and finally reach the nanometric size (nanoplastic NP). To reveal potential toxic impacts of these NPs, two microalgae, Scenedemus subspicatus (freshwater green algae), and Thalassiosira weissiflogii (marine diatom) were exposed for up to 48 h at 1, 10, 100, 1000, and 10,000 μg/L to reference polyethylene NPs (PER) or NPs made from polyethylene collected in the North Atlantic gyre (PEN, 7th continent expedition in 2015). Freshwater filter-feeding bivalves, Corbicula fluminea, were exposed to 1000 μg/L of PER and PEN for 48 h to study a possible modification of their filtration or digestion capacity. The results show that PER and PEN do not influence the cell growth of T. weissiflogii, but the PEN exposure causes growth inhibition of S. subspicatus for all exposure concentrations tested. This growth inhibition is enhanced for a higher concentration of PER or PEN (10,000 μg/L) in S. subspicatus. The marine diatom T. weissiflogii appears to be less impacted by plastic pollution than the green algae S. subspicatus for the exposure time. Exposure to NPs does not lead to any alteration of bivalve filtration; however, fecal and pseudo-fecal production increased after PEN exposure, suggesting the implementation of rejection mechanisms for inedible particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605

    Article  CAS  Google Scholar 

  • Ashton K, Holmes L, Turner A (2010) Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60:2050–2055

    Article  CAS  Google Scholar 

  • Beninger PG, Veniot A, Poussart Y (1999) Principles of pseudofeces rejection on the bivalve mantle: integration in particle processing. Mar Ecol Prog Ser 178:259–269

    Article  Google Scholar 

  • Bhattacharya P, Lin S, Turner JP, Ke PC (2010) Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J Phys Chem C 114:16556–16561

    Article  CAS  Google Scholar 

  • Bolt JD, Johnson RW (2008) Titanium dioxide pigment and polymer compositions. Google Patents

  • Cedervall T, Hansson LA, Lard M, Frohm B, Linse S (2012) Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One 7:22

    Article  Google Scholar 

  • Chae Y, Kim D, Kim SW, An Y-J (2018) Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Sci Rep 8:284

    Article  Google Scholar 

  • Cole M, Galloway TS (2015) Ingestion of nanoplastics and microplastics by Pacific oyster larvae. Environ Sci Technol 49:14625–14632

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47:6646–6655

    Article  CAS  Google Scholar 

  • Cole M, Webb H, Lindeque PK, Fileman ES, Halsband C, Galloway TS (2014) Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep 4:4528

    Article  Google Scholar 

  • da Costa JP, Santos PS, Duarte AC, Rocha-Santos T (2016) (Nano) plastics in the environment–sources, fates and effects. Sci Total Environ 566:15–26

    Article  Google Scholar 

  • Dauta A, Brunel L, Guerri M (1982) Détermination expérimentale des paramètres liés à l’assimilation de l’azote et du phosphore par Scenedesmus crassus. In: Annales de Limnologie-International Journal of Limnology. EDP Sciences, pp 33–40

  • Davis JM, Svendsgaard DJ (1990) U-Shaped dose-response curves: their occurrence and implications for risk assessment. Journal of Toxicology and Environmental Health, Part A Current Issues 30:71–83

    Article  CAS  Google Scholar 

  • Debenest T, Silvestre J, Coste M, Pinelli E (2010) Effects of pesticides on freshwater diatoms. In: Reviews of environmental contamination and toxicology. Springer, pp 87–103

  • Dehaut A, Cassone A-L, Frere L, Hermabessiere L, Himber C, Rinnert E, Riviere G, Lambert C, Soudant P, Huvet A (2016) Microplastics in seafood: benchmark protocol for their extraction and characterization. Environ Pollut 215:223–233

    Article  CAS  Google Scholar 

  • Endo S, Takizawa R, Okuda K, Takada H, Chiba K, Kanehiro H, Ogi H, Yamashita R, Date T (2005) Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar Pollut Bull 50:1103–1114

    Article  CAS  Google Scholar 

  • Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, Farley H, Amato S (2013) Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull 77:177–182

    Article  CAS  Google Scholar 

  • Gallo F, Fossi C, Weber R, Santillo D, Sousa J, Ingram I, Nadal A, Romano D (2018) Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environ Sci Eur 30:13

    Article  Google Scholar 

  • Gigault J, Pedrono B, Maxit B, Ter Halle A (2016) Marine plastic litter: the unanalyzed nano-fraction. Environmental Science: Nano 3:346–350

    CAS  Google Scholar 

  • Gigault J, Balaresque M, Tabuteau H (2018a) Estuary-on-a-chip: unexpected results for nanoparticles fate and transport. In: Environmental Science: Nano

    Google Scholar 

  • Gigault J, Halle A t, Baudrimont M, Pascal P-Y, Gauffre F, Phi T-L, El Hadri H, Grassl B, Reynaud S (2018b) Current opinion: what is a nanoplastic? Environ Pollut 235:1030–1034

    Article  CAS  Google Scholar 

  • Guillard R, Ryther J (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924

    Article  CAS  Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771

    Article  CAS  Google Scholar 

  • Koelmans AA, Besseling E, Shim WJ (2015) Nanoplastics in the aquatic environment. Critical review. In: Marine anthropogenic litter. Springer, pp 325–340

  • Lambert S, Wagner M (2016) Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere 145:265–268

    Article  CAS  Google Scholar 

  • Law KL, Moret-Ferguson S, Maximenko NA, Proskurowski G, Peacock EE, Hafner J, Reddy CM (2010) Plastic accumulation in the North Atlantic subtropical gyre. Science 329:1185–1188

    Article  CAS  Google Scholar 

  • Lonnstedt OM, Eklov P (2016) Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science 352:1213–1216

    Article  Google Scholar 

  • Mattsson K, Johnson EV, Malmendal A, Linse S, Hansson L-A, Cedervall T (2017) Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep 7:11452

    Article  Google Scholar 

  • Ortmann C, Grieshaber MK (2003) Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea. J Exp Biol 206:4167–4178

    Article  CAS  Google Scholar 

  • Plastics Europe. 2017. Plastics – the Facts 2017.

  • Rochman CM, Hentschel BT, Teh SJ (2014) Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. PLoS One 9:e85433

    Article  Google Scholar 

  • Rossi G, Barnoud J, Monticelli L (2014) Polystyrene nanoparticles perturb lipid membranes. The Journal of Physical Chemistry Letters 5:241–246

    Article  CAS  Google Scholar 

  • Salvati A, Åberg C, dos Santos T, Varela J, Pinto P, Lynch I, Dawson K (2011) Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomedicine 7:818–826

    Article  CAS  Google Scholar 

  • Ter Halle A, Ladirat L, Gendre X, Goudouneche D, Pusineri C, Routaboul C, Tenailleau C, Duployer B, Perez E (2016) Understanding the fragmentation pattern of marine plastic debris. Environ Sci Technol 50:5668–5675

    Article  Google Scholar 

  • Ter Halle A, Jeanneau L, Martignac M, Jarde E, Pedrono B, Brach L, Gigault J (2017a) Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol 51:13689–13697

    Article  Google Scholar 

  • Ter Halle A, Ladirat L, Martignac M, Mingotaud AF, Boyron O, Perez E (2017b) To what extent are microplastics from the open ocean weathered? Environ Pollut 227:167–174

    Article  Google Scholar 

  • Ward JE, Kach DJ (2009) Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res 68:137–142

    Article  CAS  Google Scholar 

  • Wegner A, Besseling E, Foekema EM, Kamermans P, Koelmans AA (2012) Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environ Toxicol Chem 31:2490–2497

    Article  CAS  Google Scholar 

  • Wright SL, Rowe D, Thompson RC, Galloway TS (2013) Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23:R1031–R1033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the association Expedition 7th Continent for the sea sampling campaign and the staff and the crew and Bruno Etcheverria for its kind help for algae and bivalves culture.

Funding

The work was supported by the Total Corporate Foundation and by the Agence Nationale de la Recherche (ANR) in the PEPSEA program (ANR-17-CE34-0008-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magalie Baudrimont.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baudrimont, M., Arini, A., Guégan, C. et al. Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves). Environ Sci Pollut Res 27, 3746–3755 (2020). https://doi.org/10.1007/s11356-019-04668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04668-3

Keywords

Navigation