Skip to main content

Advertisement

Log in

Effects of land abandonment on plant litter decomposition in a Montado system: relation to litter chemistry and community functional parameters

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Changes in land use and subsequent shifts in vegetation can influence decomposition through changes in litter quality (chemistry and structure) and alterations of soil temperature and moisture. Our aim was to study the effects of land abandonment on litter decomposition in a Mediterranean area of Montado, South Portugal. We tested the hypothesis that decomposition tends to slow down with abandonment, as woody species, richer in lignified structures, replace herbaceous species. We assessed the decomposition of community litter in situ using litterbag technique. To test the influence of local conditions, we simultaneously incubated a standard litter in situ. Our results showed that the shift from herbaceous to shrub-dominated communities lead to decreased decomposition rates. Changes in litter decomposition were primarily driven by changes in litter quality, even though the uneven pattern of litter mass loss over the experiment might reveal an effect from possible differences in microclimate. Shrub litter had higher nutrient content than herbaceous litter, which seemed to favour higher initial decomposition rates, but lower decomposition rate in the longer term. Shrubs also contribute to woody litter, richer in lignin, and secondary compounds that retard decomposition, and may play a role in increasing pools of slowly decomposing organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aber JD, Melillo JM (1982) Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content. Can J Bot 60:2263–2269

    CAS  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Aerts R, Caluwe H, Beltman B (2003) Plant community mediated vs. nutritional controls on litter decomposition rates in grasslands. Ecology 84:3198–3208

    Article  Google Scholar 

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22

    Article  Google Scholar 

  • Berg B, Laskowski R (2006) Litter decomposition: a guide to carbon and nutrient turnover. Adv Ecol Res 38:1–12

    Article  Google Scholar 

  • Berg B, Ekbohm G, Mcclaugherty C (1984) Lignin and holocellulose relations during long-term decomposition of some forest litters - long-term decomposition in a scots pine forest. Can J Bot-Rev Can Bot 62:2540–2550

    Article  CAS  Google Scholar 

  • Berg B, Ekbohm G, Johansson MB, McClaugherty C, Rutigliano F, DeSanto AV (1996) Maximum decomposition limits of forest litter types: a synthesis. Can J Bot-Rev Can Bot 74:659–672

    Article  Google Scholar 

  • Castro H (2008) Effects of land use change on plant composition and ecosystem fucntioning in an extensive agro-pastoral system: plant functional traits and ecosystem processes. University of Coimbra

  • Cornelissen JHC, Pérez-Harguindeguy N, Díaz S, Grime JP, Marzano B, Cabido M, Vendramini F, Cerabolini B (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191–200

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornelissen JHC, van Bodegom PM, Aerts R, Callaghan TV, van Logtestijn RSP, Alatalo J, Chapin FS, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, Hik DS, Hofgaard A, Jonsdottir IS, Karlsson S, Klein JA, Laundre J, Magnusson B, Michelsen A, Molau U, Onipchenko VG, Quested HM, Sandvik SM, Schmidt IK, Shaver GR, Solheim B, Soudzilovskaia NA, Stenstrom A, Tolvanen A, Totland O, Wada N, Welker JM, Zhao XQ, Team MOL (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627

    Article  PubMed  Google Scholar 

  • Correia OA (2002) Os Cistus: as Espécies do futuro? In: Loução MA (ed) Fragmentos de ecologia. Ecolar Editora, Lisboa, pp 97–119

    Google Scholar 

  • Cortez J, Demard JM, Bottner P, Monrozier LJ (1996) Decomposition of mediterranean leaf litters: a microcosm experiment investigating relationships between decomposition rates and litter quality. Soil Biol Biochem 28:443–452

    Article  CAS  Google Scholar 

  • Cortez J, Garnier E, Pérez-Harguindeguy N, Debussche M, Gillon D (2007) Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant Soil 296:19–34

    Article  CAS  Google Scholar 

  • Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66

    Article  Google Scholar 

  • Couteaux MM, McTiernan KB, Berg B, Szuberla D, Dardenne P, Bottner P (1998) Chemical composition and carbon mineralisation potential of Scots pine needles at different stages of decomposition. Soil Biol Biochem 30:583–595

    Article  CAS  Google Scholar 

  • De Angelis P, Chigwerewe KS, Mugnozza GES (2000) Litter quality and decomposition in a CO2-enriched Mediterranean forest ecosystem. Plant Soil 224:31–41

    Article  Google Scholar 

  • Dorrepaal E, Cornelissen JHC, Aerts R, Wallen B, Van Logtestijn RSP (2005) Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? J Ecol 93:817–828

    Article  Google Scholar 

  • Eviner VT (2004) Plant traits that influence ecoystem processes vary independently among species. Ecology 85:2215–2229

    Article  Google Scholar 

  • Eviner VT, Chapin FS (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Syst 34:455–485

    Article  Google Scholar 

  • Fioretto A, Papa S, Fuggi A (2003) Litter-fall and litter decomposition in a low Mediterranean shrubland. Biol Fertil Soils 39:37–44

    Article  CAS  Google Scholar 

  • Fioretto A, Di Nardo C, Papa S, Fuggi A (2005) Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37:1083–1091

    Article  CAS  Google Scholar 

  • Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehsten V, Leps J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quetier F, Robson M, Sternberg M, Theau JP, Thebault A, Zarovali M (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611

    Article  PubMed  Google Scholar 

  • Gallardo A, Merino J (1993) Leaf decomposition in 2 Mediterranean ecosystems of Southwest Spain - influence of substrate quality. Ecology 74:152–161

    Article  Google Scholar 

  • Garnier E, Vancaeyzeele S (1994) Carbon and nitrogen-content of congeneric annual and perennial grass species - relationships with growth. Plant Cell Environ 17:399–407

    Article  Google Scholar 

  • Garnier E, Cortez J, Billés G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P (2004) Plant functional Markers capture ecosystem properties during secundary succession. Ecology 85:2630–2637

    Article  Google Scholar 

  • Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Leps J, Meier T, Pakeman R, Papadimitriou M, Papanastasis V, Quested HM, Quétier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau JP, Thébault A, Vile D, Zarovali MP (2007) Assessing the effects of land use change on plant traits communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 european sites. Ann Bot 99:967–985

    Article  PubMed  Google Scholar 

  • Gillon D, Joffre R, Ibrahima A (1994) Initial litter properties and decay rate: a microcosm experiment on Mediterranean species. Can J Bot 72:946–954

    Article  Google Scholar 

  • Gillon D, Houssard C, Joffre R (1999) Using near-infrared reflectance spectroscopy to predict carbon, nitrogen and phosphorus content in heterogeneous plant material. Oecologia 118:173–182

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties. Wiley, Chichester

    Google Scholar 

  • Joffre R, Gillon D, Dardenne P, Agneessens R, Biston R (1992) The use of near-infrared reflectance spectroscopy in litter decomposition studies. Ann Sci For 49:481–488

    Article  Google Scholar 

  • Kazakou E, Vile D, Shipley B, Gallet C, Garnier E (2006) Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct Ecol 20:21–30

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  • Moro MJ, Domingo F (2000) Litter decomposition in four woody species in a Mediterranean climate: weight loss, N and P dynamics. Ann Bot 86:1065–1071

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nuñez E, Cabeza J, Escudero JC (1989) Relación entre la biomasa de jarales y su rendimiento energetico por pirolisis. CIHEAM - Options Méditerranéenes 3:345–350

    Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Google Scholar 

  • Pardo F, Gil L, Pardos JA (1997) Field study of beech (Fagus sylvatica L) and melojo oak (Quercus pyrenaica Willd) leaf litter decomposition in the centre of the Iberian Peninsula. Plant Soil 191:89–100

    Article  CAS  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Cornelissen JH, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and thoughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Article  Google Scholar 

  • Poorter H, Bergkotte M (1992) Chemical-composition of 24 wild-species differing in relative growth-rate. Plant Cell Environ 15:221–229

    Article  CAS  Google Scholar 

  • Quested H, Eriksson O, Fortunel C, Garnier E (2007) Plant traits relate to whole-community litter quality and decomposition following land use change. Funct Ecol 21:1016–1026

    Article  Google Scholar 

  • Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8:51–81

    Article  CAS  Google Scholar 

  • Simões MP (2002) Dinâmica de biomassa (carbono) e nutrientes em Cistus salvifolius L. e Cistus ladanifer L. Influência nas características do solo. Universidade de Évora, Évora

    Google Scholar 

  • Wardle DA, Bonner KI, Barker GM (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–595

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice-Hall, NJ

    Google Scholar 

Download references

Acknowledgments

This work was financed by the EU project VISTA (Vulnerability of Ecosystem Services to Land Use Change in Traditional Agricultural Landscapes; contract nº EVK2-2001-000356) and by a PhD grant from FCT (Portuguese Foundation for Science and Technology). Many thanks to ADPM who gave permission for this work to be developed at their property.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Castro.

Additional information

Responsible Editor: Alfonso Escudero.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

(DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, H., Fortunel, C. & Freitas, H. Effects of land abandonment on plant litter decomposition in a Montado system: relation to litter chemistry and community functional parameters. Plant Soil 333, 181–190 (2010). https://doi.org/10.1007/s11104-010-0333-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0333-2

Keywords

Navigation