Skip to main content

Advertisement

Log in

Environmental drivers of community diversity in a neotropical urban landscape: a multi-scale analysis

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Many aquatic communities are linked by the aerial dispersal of multiple, interacting species and are thus structured by processes occurring in both the aquatic and terrestrial compartments of the ecosystem.

Objectives

To evaluate the environmental factors shaping the aquatic macroinvertebrate communities associated with tank bromeliads in an urban landscape.

Methods

Thirty-two bromeliads were georeferenced to assess the spatial distribution of the aquatic meta-habitat in one city. The relative influence of the aquatic and terrestrial habitats on the structure of macroinvertebrate communities was analyzed at four spatial scales (radius = 10, 30, 50, and 70 m) using redundancy analyses.

Results

We sorted 18,352 aquatic macroinvertebrates into 29 taxa. Water volume and the amount of organic matter explained a significant part of the taxa variance, regardless of spatial scale. The remaining variance was explained by the meta-habitat size (i.e., the water volume for all of the bromeliads within a given surface area), the distance to the nearest building at small scales, and the surface area of buildings plus ground cover at larger scales. At small scales, the meta-habitat size influenced the two most frequent mosquito species in opposite ways, suggesting spatial competition and coexistence. Greater vegetation cover favored the presence of a top predator.

Conclusions

The size of the meta-habitat and urban landscape characteristics influence the structure of aquatic communities in tank bromeliads, including mosquito larval abundance. Modifications to this landscape will affect both the terrestrial and aquatic compartments of the urban ecosystem, offering prospects for mosquito management during urban planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island”. Int J Climatol 23:1–26

    Article  Google Scholar 

  • Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Brouard O, Céréghino R, Leroy C, Pelozuelo L, Dejean A, Corbara B, Carrias JF (2012) Understory environments influence functional diversity in tank-bromeliad ecosystems. Freshwat Biol 57:815–823

    Article  Google Scholar 

  • Brown BL, Swan CM, Auerbach DA, Campbell Grant EH, Hitt NP, Maloney KO, Patrick C (2011) Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystem. J North Amer Benthol Soc 30:310–327

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media, Heidelberg

    Google Scholar 

  • Chadee DD, Corbet PS, Greenwood JJD (1990) Egg-laying yellow fever mosquitoes avoid sites containing eggs laid by themselves or by conspecifics. Entomol Exp Appl 57:295–298

    Article  Google Scholar 

  • Clements AN (1992) The biology of mosquitoes: development, nutrition and reproduction, vol 1. CABI Publishing, London

    Google Scholar 

  • Dézerald O, Leroy C, Corbara B, Dejean A, Talaga S, Céréghino R (2017) Environmental drivers of invertebrate population dynamics in neotropical tank bromeliads. Freshwater Biol. doi:10.1111/fwb.12862

    Google Scholar 

  • Dézerald O, Talaga S, Leroy C, Carrias JF, Corbara B, Dejean A, Céréghino R (2014) Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads. Hydrobiologia 723:77–86

    Article  Google Scholar 

  • Ellis AM (2008) Linking movement and oviposition behaviour to spatial population distribution in the tree hole mosquito Ochlerotatus triseriatus. J Anim Ecol 77:156–166

    Article  PubMed  Google Scholar 

  • Frank JH, Lounibos LP (2009) Insects and allies associated with bromeliads: a review. Terr Arthropod Rev 1:125–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert B, Srivastava DS, Kirby KR (2008) Niche partitioning at multiple scales facilitates coexistence among mosquito larvae. Oikos 117:944–950

    Article  Google Scholar 

  • Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DP (2008) The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front Ecol Environ 6:264–272

    Article  Google Scholar 

  • Hammill E, Atwood TB, Corvalan P, Srivastava DS (2008) Behavioural responses to predation may explain shifts in community structure. Freshwat Biol 60:125–135

    Article  Google Scholar 

  • Hammill E, Atwood TB, Srivastava DS (2015) Predation threat alters composition and functioning of bromeliad ecosystems. Ecosystems 18:857–866

    Article  CAS  Google Scholar 

  • Huang J, Miller JR, Chen SC, Vulule JM, Walker ED (2006) Anopheles gambiae (Diptera: culicidae) oviposition in response to agarose media and cultured bacterial volatiles. J Med Entomol 43:498–504

    Article  PubMed  Google Scholar 

  • Jocque M, Kernahan A, Nobes A, Willians C, Field R (2010) How effective are non-destructive sampling methods to assess aquatic invertebrate diversity in bromeliads? Hydrobiologia 649:293–300

    Article  Google Scholar 

  • Kark S, Iwaniuk A, Schalimtzek A, Banker E (2007) Living in the city: can anyone become an ‘urban exploiter’? J Biogeogr 34:638–651

    Article  Google Scholar 

  • Kiflawi M, Blaustein L, Mangel M (2003) Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density. Ecol Entomol 28:168–173

    Article  Google Scholar 

  • Kitching RL (2000) Food webs and container habitats: the natural history and ecology of phytotelmata. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Krawchuk MA, Taylor PD (2003) Changing importance of habitat structure across multiple spatial scales for three species of insects. Oikos 103:153–161

    Article  Google Scholar 

  • Lane J (1953) Neotropical Culicidae, vol 1, 2. Universidade de São Paulo, São Paulo

    Google Scholar 

  • LeCraw RM, Srivastava DS, Romero GQ (2014) Metacommunity size influences aquatic community composition in a natural mesocosm landscape. Oikos 123:903–911

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multiscale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Leroy C, Carrias JF, Céréghino R, Corbara B (2015) The contribution of microorganisms and metazoans to mineral nutrition in bromeliads. J Plant Ecol 9:241–255

    Article  Google Scholar 

  • Leroy C, Corbara B, Dejean A, Céréghino R (2009) Ants mediate foliar structure and nitrogen acquisition in a tank-bromeliad. New Phytol 183:1124–1133

    Article  PubMed  Google Scholar 

  • Lounibos LP, O’meara GF, Nishimura N (2003) Interactions with native mosquito larvae regulate the production of Aedes albopictus from bromeliads in Florida. Ecol Entomol 28:551–558

    Article  Google Scholar 

  • Lowe EC, Wilder SM, Hochuli DF (2015) Persistence and survival of the spider Nephila plumipes in cities: do increased prey resources drive the success of an urban exploiter? Urban Ecosyst 19:705–720

    Article  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  • Merritt RW, Cummins KW (2008) An introduction to the aquatic insects of North America. Kendall Hunt Publishing Company, Dubuque

    Google Scholar 

  • Mocellin MG, Simões TC, do Nascimento TFS, Teixeira MLF, Lounibos LP, Lourenço de Oliveira R (2009) Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro. Are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus? Mem Inst Oswaldo Cruz 104:1171–1176

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro DMAF, De Oliveira PES, Potting RPJ, Brito AC, Fital SJF, Sant’Ana AE (2003) The potential attractant or repellent effects of different water types on oviposition in Aedes aegypti L. (Dipt., Culicidae). J Appl Entomol 127:46–50

    Article  Google Scholar 

  • Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 4:439–473

    Article  Google Scholar 

  • Ponnusamy L, Wesson DM, Arellano C, Schal C, Apperson CS (2010) Species composition of bacterial communities influences attraction of mosquitoes to experimental plant infusions. Microb Ecol 59:158–173

    Article  PubMed  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Richardson BA (1999) The bromeliad microcosm and the assessment of faunal diversity in a Neotropical forest. Biotropica 31:321–336

    Article  Google Scholar 

  • Talaga S, Delabie JHC, Dézerald O, Salas-Lopez A, Petitclerc F, Leroy C, Hérault B, Céréghino R, Dejean A (2015a) A bromeliad species reveals invasive ant presence in urban areas of French Guiana. Ecol Indic 58:1–7

    Article  Google Scholar 

  • Talaga S, Leroy C, Céréghino R, Dejean A (2016) Convergent evolution of intraguild predation in phytotelm-inhabiting mosquitoes. Evol Ecol 30:1133–1147

    Article  Google Scholar 

  • Talaga S, Murienne J, Dejean A, Leroy C (2015b) Online database for mosquito (Diptera, Culicidae) occurrence records in French Guiana. ZooKeys 532:107–115

    Article  Google Scholar 

  • QGIS Development Team (2015) QGIS Geographic Information System. Open Source Geospatial Foundation Project. URL http://qgis.osgeo.org/

  • Trzcinski M, Srivastava D, Corbara B, Dézerald O, Leroy C, Carrias JF, Dejean A, Céréghino R (2016) The effects of food-web structure on ecosystem function exceeds those of precipitation. J Anim Ecol 85:1147–1160

    Article  PubMed  Google Scholar 

  • Wilbur HM (1980) Complex life cycles. Annu Rev Ecol Syst 11:67–93

    Article  Google Scholar 

  • Yanoviak SP (2001) Container color and location affect macroinvertebrate community structure in artificial treeholes in Panama. Florida Entomol 84:265–271

    Article  Google Scholar 

  • Yee DA, Yee SH (2007) Nestedness patterns of container-dwelling mosquitoes: effects of larval habitat within variable terrestrial matrices. Hydrobiologia 592:373–385

    Article  Google Scholar 

  • Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106:375–386

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Andrea Yockey-Dejean for proofreading the manuscript, the Laboratoire Environnement de Petit Saut for furnishing logistical assistance, and the municipality of Sinnamary (through the Department of the Environment) for permitting us to work inside the city limits. We also acknowledge Elise Bayle for her help in developing the GIS. Financial support was provided by the French Agence Nationale de la Recherche through an ‘‘Investissement d’Avenir’’ grant (CEBA, ref. ANR-10-LABX-25-01). ST and OD were each funded by a PhD fellowship (Université Antilles-Guyane for ST; French Centre National de la Recherche Scientifique and the Fond Social Européen for OD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Dejean.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talaga, S., Petitclerc, F., Carrias, JF. et al. Environmental drivers of community diversity in a neotropical urban landscape: a multi-scale analysis. Landscape Ecol 32, 1805–1818 (2017). https://doi.org/10.1007/s10980-017-0542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0542-7

Keywords

Navigation