Skip to main content
Log in

Floral development of Urospatha: merosity and phylogeny in the Lasioideae (Araceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In this paper we study merosity in the genus Urospatha within the framework of a resolved phylogeny of the Araceae. We analyse how a transition from dimerous or tetramerous merosity to pentamerous or hexamerous merosity can occur developmentally in the Lasioideae. In Urospatha, initiation of floral primordia along the inflorescence is acropetal, while development of flowers is basipetal. This indicates the presence of two distinct phases in the development of the Urospatha inflorescence. The first phase corresponds to initiation of flowers and establishment of the phyllotactic pattern, and the second phase to differentiation of floral organs. Urospatha is characterized by the presence of trimerous, tetramerous, pentamerous and rarely hexamerous flowers. In all types of flowers, the stamens are closely associated and opposite to the tepals. Pentamerous flowers are formed by addition of a sector comprising a stamen and tepal. Likewise, in the case of hexamerous flowers, two sectors are added. In the Lasioideae, the increase in the number of tepals and stamens is linked with two developmental processes that have appeared independently in the subfamily: (1) addition of one or two stamen–petal sectors (Anaphyllopsis and Urospatha), and (2) independent increase in the number of tepals and stamens on whorls, more or less organized and inserted in alternate position (Dracontium). Tetramerous whorls as they occur in basal Lasioideae would be homologous to two dimerous whorls from an evolutionary point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barabé D, Bertrand C (1996) Organogénie florale des genres Culcasia et Cercestis (Araceae). Can J Bot 74:898–908

    Article  Google Scholar 

  • Barabé D, Labrecque M (1983) Vascularisation de la fleur de Calla palustris (Araceae). Can J Bot 61:1718–1726

    Article  Google Scholar 

  • Barabé D, Lacroix C (2001) The developmental floral morphology of Montrichardia arborescens (Araceae) revisited. Bot J Linn Soc 135:413–420

    Google Scholar 

  • Barabé D, Lacroix C (2002) Aspects of floral development in Caladium bicolor (Araceae). Can J Bot 80:899–905

    Article  Google Scholar 

  • Barabé D, Lacroix C (2008a) Developmental morphology of the flower of Anthurium jenmanii: a new element in our understanding of basal Araceae. Botany 86:45–52

    Article  Google Scholar 

  • Barabé D, Lacroix C (2008b) Developmental morphology of the flower of Anaphyllopsis americana and its relevance to our understanding of basal Araceae. Botany 86:1467–1473

    Article  Google Scholar 

  • Barabé D, Lacroix C (2008c) Hierarchical developmental morphology: the case of the inflorescence of Philodendron ornatum (Araceae). Int J Plant Sci 169:1013–1022

    Article  Google Scholar 

  • Barabé D, Bruneau A, Forest F, Lacroix C (2002) The correlation between development of atypical bisexual flowers and phylogeny in the Aroideae (Araceae). Plant Syst Evol 232:1–19

    Article  Google Scholar 

  • Barabé D, Lacroix C, Jeune B (2004a) The game of numbers in homeotic flowers of Philodendron (Araceae). Can J Bot 82:1459–1467

    Article  Google Scholar 

  • Barabé D, Lacroix C, Bruneau A, Archambault A, Gibernau M (2004b) Floral development and phylogenetic position of Schismatoglottis (Araceae). Int J Plant Sci 165:173–189

    Article  Google Scholar 

  • Barabé D, Lacroix C, Jeune B (2008) Quantitative developmental analysis of homeotic changes in the inflorescence of Philodendron (Araceae). Ann Bot 101:1027–1034

    Article  PubMed  Google Scholar 

  • Barahona Carvajal ME (1977) Estudio morfologico comparativo de las inflorescencias de dos especies de Araceae: Anthurium denudatum Engler y Philodendron radiatum Schot. Rev Biol Trop 25:301–333

    Google Scholar 

  • Bowman JL, Brüggemann H, Lee J-Y, Mummenhoff K (1999) Evolutionary changes in floral structure within Lepidium L. (Brassicaceae). Int J Plant Sci 160:917–929

    Article  PubMed  Google Scholar 

  • Buzgo M (1994) Inflorescence development of Pistia stratiotes (Araceae). Bot Jahr 115:557–570

    Google Scholar 

  • Buzgo M (1999) Flower structure and development of Acoraceae and basal Araceae and their systematic position among basal monocotyledons. Unpub Thesis, Zurich University (Universität Zürich), Switzerland

  • Buzgo M (2001) Flower structure and development of Araceae compared with alismatids and Acoraceae. Bot J Linn Soc 136:393–425

    Article  Google Scholar 

  • Cabrera LI, Salazar GA, Chase MW, Mayo SJ, Bogner J, Dávila P (2008) Phylogenetic relationships of Aroids and Duckweeds (Araceae) inferred from coding and non-coding plastid DNA. Am J Bot 95:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Carvell WN (1989) Floral anatomy of the Pothoideae and Monsteroideae. (Araceae). Unpub Thesis, Department of Botany, Miami University, Oxford

  • Cusimano N, Bogner J, Mayo SJ, Boyce PC, Wong SY, Hesse M, Hetterscheid WLA, Keating R, French JC (2011) Relationships within the Araceae: comparison of morphological patterns with molecular phylogenies. Am J Bot 98 (in press)

  • Engler A, Krause K (1912) Araceae-Philodendroideae-Philodendreae. In: Engler A (ed.) Das Pflanzenreich. Regni vegetabilis conspectus, IV. 23 Da. Heft 55. Engelmann, Leipzig Reprinted 1966 (J. Cramer) pp 1–134

  • Eyde RH, Nicolson DH, Sherwin P (1967) A survey of floral anatomy in Araceae. Am J Bot 54:478–479

    Article  Google Scholar 

  • French JC (1985a) Patterns of endothecial wall thickenings in Araceae: subfamilies subfamilies Pothoideae and Monsteroideae. Am J Bot 72:472–486

    Article  Google Scholar 

  • French JC (1985b) Patterns of endothecial wall thickenings in Araceae: subfamilies Calloideae, Lasioideae, and Philodendroideae. Bot Gaz 146:521–533

    Article  Google Scholar 

  • Hay A (1992) Tribal and subtribal delimitation and circumscription of the genera of Araceae tribe Lasieae. Ann Missouri Bot Gard 79:184–205

    Article  Google Scholar 

  • Hotta M (1971) Study of the family Araceae: general remarks. Jpn J Bot 20:269–310

    Google Scholar 

  • Igersheim A, Buzgo M, Endress PK (2001) Gynoecium diversity and systematics in basal monocots. Bot J Linn Soc 136:1–65

    Article  Google Scholar 

  • Kubitzki K (1987) Origin and significance of trimerous flowers. Taxon 36:21–28

    Article  Google Scholar 

  • Lehmann N, Sattler R (1992) Irregular floral development in Calla palustris (Araceae) and the concept of homeosis. Am J Bot 79:1145–1157

    Article  Google Scholar 

  • Mayo SJ (1986) Systematics of Philodendron Schott (Araceae) with special reference to inflorescence characters. Unpub Thesis, Department of Botany, University of Reading, UK

  • Mayo SJ (1989) Observations of gynoecial structure in Philodendron (Araceae). Bot J Linn Soc 100:139–172

    Article  Google Scholar 

  • Mayo SJ, Bogner J, Boyce PC (1997) The genera of Araceae. Royal Botanic Gardens, Kew

    Google Scholar 

  • Poisson G, Barabé D (2011) Developmental morphology of the flower of Dracontium polyphyllum in the context of the phylogeny of the Araceae. Kew Bull (in press)

  • Radford AE, Dickinson WC, Masset JR, Bell CR (1974) Vascular plants systematic. Harper & Row, New York

    Google Scholar 

  • Ronse De Craene LP, Smets EF (1994) Merosity in flowers: definition, origin, and taxonomic significance. Plant Syst Evol 191:83–104

    Article  Google Scholar 

  • Ronse De Craene LP (2003) The evolutionary significance of homeosis in flowers: a morphological perspective. Int J Plant Sci 164(5 Suppl):S225–S235

    Article  Google Scholar 

  • Sattler R (1994) Homology, homeosis and process morphology in plants. In: Hall BK (ed) Homology: the hierarchical basis of comparative biology. Academic Press, London, pp 423–475

    Google Scholar 

  • Tucker SC (2000) Floral development and homeosis in Saraca (Leguminoseae: Caesalpinioideae: Detarieae). Int J Plant Sci 161:537–549

    Article  Google Scholar 

  • Uhlarz H (1982) Typologische und ontogenetische Untersuchungen an Spathicarpa sagittifolia Schott (Araceae): Wuchsform und Infloreszenz. Beit Biol Pflanz 57:389–429

    Google Scholar 

  • Uhlarz H (1986) Zum Problem des “blattlosen Sprosses”: Morphologie und Anatomie der Infloreszenz von Pinella tripartita (Blume) Schott (Araceae, Aroideae). Beit Biol Pflanz 61:241–282

    Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H-Y (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by operating grants from the Natural Sciences and Engineering Research Council of Canada to D.B. and C.L., and by the project “2ID” from the CNRS Amazonie Program (Conseil national de la recherche scientifique, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Barabé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabé, D., Lacroix, C. & Gibernau, M. Floral development of Urospatha: merosity and phylogeny in the Lasioideae (Araceae). Plant Syst Evol 296, 41–50 (2011). https://doi.org/10.1007/s00606-011-0475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0475-6

Keywords

Navigation