Skip to main content
Log in

Hypoelastic, hyperelastic, discrete and semi-discrete approaches for textile composite reinforcement forming

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The clear multi-scale structure of composite textile reinforcements leads to develop continuous and discrete approaches for their forming simulations. In this paper two continuous modelling respectively based on a hypoelastic and hyperelastic constitutive model are presented. A discrete approach is also considered in which each yarn is modelled by shell finite elements and where the contact with friction and possible sliding between the yarns are taken into account. Finally the semi-discrete approach is presented in which the shell finite element interpolation involves continuity of the displacement field but where the internal virtual work is obtained as the sum of tension, in-plane shear and bending ones of all the woven unit cells within the element. The advantages and drawbacks of the different approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Advani SG (1994) Flow and rheology in polymeric composites manufacturing. Elsevier, Amsterdam

    Google Scholar 

  2. Saouab A, Bréard J, Lory P, Gardarein B, Bouquet G (2001) Injection simulations of thick composite parts manufactured by the RTM process. Compos Sci Technol 61:445–451

    Article  Google Scholar 

  3. Mouritz AP, Bannister MK, Falzon PJ, Leong KH (1999) Review of applications for advanced three-dimensional fibre textile composites. Compos Part A 30:1445–1461

    Article  Google Scholar 

  4. de Luycker E, Morestin F, Boisse P, Marsal D (2009) Simulation of 3D interlock composite preforming. Compos Struct 88:615–623

    Article  Google Scholar 

  5. Tong L, Mouritz AP, Bannister MK (2002) 3D Fibre reinforced polymer composites. Elsevier Science, Oxford

    Google Scholar 

  6. Creech G, Pickett AK (2006) Meso-modelling of non-crimp fabric composites for coupled drape and failure analysis. J Mater Sci 41:6725–6736

    Article  Google Scholar 

  7. Boisse P, Gasser A, Hagège B, Billoet JL (2005) Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level. J Mater Sci 40:5955–5962

    Article  Google Scholar 

  8. Dong L, Lekakou C, Bader MG (2001) Processing of composites: simulations of the draping of fabrics with updated material behaviour law. J Compos Mater 35:138–163

    Article  Google Scholar 

  9. Hagège B, Boisse P, Billoët JL (2005) Finite element analyses of knitted composite reinforcement at large strain. European Journal of Computational Mechanics 14:767–776

    MATH  Google Scholar 

  10. Peng X, Cao J (2005) A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Compos Part A 36:859–874

    Article  Google Scholar 

  11. Rogers TG (1989) Rheological characterisation of anisotropic materials. Composites 20:21–27

    Article  Google Scholar 

  12. Spencer AJM (2000) Theory of fabric-reinforced viscous fluids. Compos Part A 31:1311–1321

    Article  Google Scholar 

  13. ten Thije RHW, Akkerman R, Huétink J (2007) Large deformation simulation of anisotropic material using an updated Lagrangian finite element method. Comput Methods Appl Mech Eng 196:3141–3150

    Article  MATH  Google Scholar 

  14. Yu WR, Pourboghrata F, Chungb K, Zampaloni M, Kang TJ (2002) Non-orthogonal constitutive equation for woven fabric reinforced thermoplastic composites. Compos Part A 33:1095–1105

    Article  Google Scholar 

  15. Ben Boukaber B, Haussy G, Ganghoffer JF (2007) Discrete models of woven structures. Macroscopic approach. Compos Part B 38:498–505

    Article  Google Scholar 

  16. Duhovic M, Bhattacharyya D (2006) Simulating the deformation mechanisms of knitted fabric composites. Compos Part A 37:1897–1915

    Article  Google Scholar 

  17. Pickett AK, Creech G, de Luca P (2005) Simplified and advanced simulation methods for prediction of fabric draping. European Journal of Computational Mechanics 14:677–691

    MATH  Google Scholar 

  18. Zhou G, Sun X, Wang Y (2004) Multi-chain digital element analysis in textile mechanics. Compos Sci Technol 64:239–244

    Article  Google Scholar 

  19. Durville D (2005) Numerical simulation of entangled materials mechanical properties. J Mater Sci 40:5941–5948

    Article  Google Scholar 

  20. Durville D (2008) A finite element approach of the behaviour of woven materials at microscopic scale—11th Euromech-Mecamat conference—Mechanics of microstructured solids: cellular materials, fiber reinforced solids and soft tissues, Torino, Italia. arXiv:0804.2952v1 [cond-mat.soft]

  21. Miao Y, Zhou E, Wang Y, Cheeseman BA (2008) Mechanics of textile composites: micro-geometry. Compos Sci Technol 68:1671–1678

    Article  Google Scholar 

  22. Truesdell C (1955) Hypo-elasticity. J Ration Mech Anal 4:83–133

    MathSciNet  Google Scholar 

  23. Xiao H, Bruhns OT, Meyers A (1998) On objective corotational rates and their defining spin tensors. Int J Solids Struct 35:4001–4014

    Article  MATH  MathSciNet  Google Scholar 

  24. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    MATH  Google Scholar 

  25. Crisfield MA (1997) Non-linear finite element analysis of solids and structures. Wiley, Chichester

    Google Scholar 

  26. Badel P, Gauthier S, Vidal-Sallé E, Boisse P (2008) Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming. Compos Part A. doi:10.1016/j.compositesa.2008.04.015

    Google Scholar 

  27. Hughes TJR, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis. Int J Numer Methods Eng 15:1862–1867

    Article  MATH  MathSciNet  Google Scholar 

  28. Khan MA, Mabrouki T, Boisse P (2009) Numerical and experimental forming analysis of woven Composites with double dome benchmark. Proceedings Esaform 2009, Springer

  29. Khan MA (2009) Numerical and experimental analyses of woven composite reinforcement draping using a hypoelastic behaviour. Ph.D. Thesis, INSA Lyon

  30. Woven composites benchmark forum. http://www.wovencomposites.org/. Accessed 11 May 2009

  31. Cao J, Akkerman R, Boisse P, Chen J et al (2008) Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos Part A 39:1037–1053

    Article  Google Scholar 

  32. Lomov SV, Boisse P, De Luycker E, Morestin F, Vanclooster K, Vandepitte D, Verpoest I, Willems A (2008) Full-field strain measurements in textile deformability studies. Compos Part A 39:1232–1244

    Article  Google Scholar 

  33. Buet-Gautier K, Boisse P (2001) Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements. Exp Mech 41:260–269

    Article  Google Scholar 

  34. Spencer AJM (1984) Continuum theory of the mechanics of fibres-reinforced composites. Springer-Verlag, New York

    Google Scholar 

  35. Basar Y, Weichert D (2000) Nonlinear continuum mechanics of solids. Springer, Berlin

    MATH  Google Scholar 

  36. Ogden RW (1984) Non-linear elastic deformations. Wiley, New York

    Google Scholar 

  37. Truesdell C, Noll W (1965) The nonlinear field theories of mechanics. Edition Handbuch der Physik Vol. III. Spinger, Berlin

    Google Scholar 

  38. Aimène Y, Vidal-Sallé E, Hagège B, Sidoroff F, Boisse P (2009) A hyperelastic approach for composite reinforcement large deformation analysis. J Compos Mater. doi:10.1177/0021998309345348

    Google Scholar 

  39. Daniel JL, Soulat D, Dumont F, Zouari B, Boisse P, Long AC (2003) Forming simulation of very unbalanced woven composite reinforcements. Int J Form Process 6:465–480

    Article  Google Scholar 

  40. Dumont F (2003) Expérimentations et modèles de comportement de renforts de composites tissés. Ph.D. Thesis, Paris VI University

  41. Dridi S (2009) Modélisation du comportement mécanique des textiles par des lois hyperélastiques. Ph.D. Thesis, University of Monastir and INSA Lyon, to appear

  42. Badel P, Vidal-Sallé E, Maire E, Boisse P (2009) Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. Compos Sci Technol 68:2433–2440

    Article  Google Scholar 

  43. Grave G, Birkefeld K, von Reden T, Drechsler K, Kyosev Y, Rathjens A (2009) Simulation of 3D overbraiding—solutions and challenges. Second World Conference on 3D Fabrics and their Applications, Greenville

  44. Nilakantan G, Keefe M, Gillespie JW, Bogetti TA (2009) Simulating the impact of multi-layer fabric targets using a multi-scale model and the finite element method. Recent advances in textile composites. Proceedings of the 9th International Conference on Textile Composites—TEXCOMP9), DEStech Publications, Inc., 506–515

  45. Sapozhnikov SB, Forental MV, Dolganina NY (2007) Improved methodology for ballistic limit and blunt trauma estimation for use with hybrid metal/textile body armor. Proceedings of the Conference Finite element modelling of textiles and textile composites (CD ROM), St-Petersburg

  46. Boisse P, Zouari B, Daniel JL (2006) Importance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming. Compos Part A 37:2201–2212

    Article  Google Scholar 

  47. Hamila N, Boisse P, Sabourin F, Brunet M (2009) A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Methods Eng 79(12):1443–1466

    Article  MATH  Google Scholar 

  48. Prodromou AG, Chen J (1997) On the relationship between shear angle and wrinkling of textile composite preforms. Compos Part A 28:491–503

    Article  Google Scholar 

  49. de Bilbao E, Soulat D, Hivet G, Launay J, Gasser A (2008) Bending test of composite reinforcements. International Journal of Material Forming. doi:10.1007/s12289-008-0265-z

    Google Scholar 

  50. Launay J, Hivet G, Duong AV, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Technol 68:506–515

    Article  Google Scholar 

  51. Lomov SV, Verpoest I (2006) Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements. Compos Sci Technol 66:919–933

    Article  Google Scholar 

  52. Sabourin F, Brunet M (1995) Analyses of plates and shells with a simplified 3 node triangular element. Thin-walled Struct 21:238–251

    Article  Google Scholar 

  53. Onate E, Zarate F (2000) Rotation-free triangular plate and shell elements. Int Numer Methods Eng 47:557–603

    Article  MATH  MathSciNet  Google Scholar 

  54. Allaoui S, Boisse P, Chatel S, Hamila N, Hivet G, Soulat D (2009) Experimental and numerical analysis of a woven reinforcement forming process. Compos Part B, submitted

  55. Hamila N, Boisse P, Chatel S (2008) Finite element simulation of composite reinforcement draping using a three node semi discrete triangle. International Journal of Material Forming 1:867–870. doi:10.1007/s12289-008-0-273-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Boisse.

Appendix A

Appendix A

γ is the shear angle, γ = θ1–θ2 (Fig. 3). It is shown that a shear angle increment dγ gives stresses proportional to Gdγ in the stress computation scheme presented “Continuous approach 1: a hypoelastic model” (Eq. 3 to 11). That is important because the in-plane shear behaviour of a textile material is function of the shear angle (G is not a constant and depends on γ).

The polar rotation tensor and deformation gradient tensor are respectively:

$$ \underline{\underline {\mathbf{R}}} = {\underline {\mathbf{e}}_\alpha } \otimes {\underline {\mathbf{e}}_{\alpha 0}}\quad \underline{\underline {\mathbf{F}}} = {\lambda_\beta }{\underline {\mathbf{f}}_\beta } \otimes {\underline {\mathbf{e}}_{\beta 0}} $$
(28)

\( {\lambda_\beta } \) is the deformed length of an initially unit fibre in the direction β. The right stretch tensor \( \underline{\underline {\mathbf{U}}} \) is given by the polar decomposition:

$$ \underline{\underline {\mathbf{U}}} = {\underline{\underline {\mathbf{R}}}^{\text{T}}} \cdot \underline{\underline {\mathbf{F}}} = \left( {{{\underline {\mathbf{e}} }_{\alpha 0}} \otimes {{\underline {\mathbf{e}} }_\alpha }} \right) \cdot \left( {{\lambda_\beta }{{\underline {\mathbf{f}} }_\beta } \otimes {{\underline {\mathbf{e}} }_{\beta 0}}} \right) = \left( {{\lambda_\beta }{{\underline {\mathbf{f}} }_\beta } \cdot {{\underline {\mathbf{e}} }_\alpha }} \right)\left( {{{\underline {\mathbf{e}} }_{\alpha 0}} \otimes {{\underline {\mathbf{e}} }_{\beta 0}}} \right) $$
(29)

The symmetry of \( \underline{\underline {\mathbf{U}}} \) imposes

$$ {\lambda_1}{\underline {\mathbf{f}}_2} \cdot {\underline {\mathbf{e}}_1} = {\lambda_2}{\underline {\mathbf{f}}_1} \cdot {\underline {\mathbf{e}}_2} $$
(30)

In the case of pure in plane shear (λ1 = λ2 = 1) or in the case of equal fibre elongations in warp weft directions, this equation becomes

$$ {\underline {\mathbf{f}}_2} \cdot {\underline {\mathbf{e}}_1} = {\underline {\mathbf{f}}_1} \cdot {\underline {\mathbf{e}}_2}\quad {\text{or}}\quad {\underline {\mathbf{h}}_2} \cdot {\underline {\mathbf{e}}_1} = {\underline {\mathbf{g}}_1} \cdot {\underline {\mathbf{e}}_2} $$
(31)

In the case of most of the composite reinforcements, the fibre elongations are small and (31) can be considered.

Because the frames (\( {\underline {\mathbf{e}}_1},{\underline {\mathbf{e}}_2} \)), (\( {\underline {\mathbf{g}}_1},{\underline {\mathbf{g}}_2} \)), (\( {\underline {\mathbf{h}}_1},{\underline {\mathbf{h}}_2} \)) are orthonormal

$$ {\underline {\mathbf{g}}_1} \cdot {\underline {\mathbf{e}}_1} = {\underline {\mathbf{g}}_2} \cdot {\underline {\mathbf{e}}_2}\quad {\underline {\mathbf{g}}_1} \cdot {\underline {\mathbf{e}}_2} = - {\underline {\mathbf{g}}_2} \cdot {\underline {\mathbf{e}}_1} $$
(32)
$$ {\underline {\mathbf{h}}_1} \cdot {\underline {\mathbf{e}}_1} = {\underline {\mathbf{h}}_2} \cdot {\underline {\mathbf{e}}_2}\quad {\underline {\mathbf{h}}_1} \cdot {\underline {\mathbf{e}}_2} = - {\underline {\mathbf{h}}_2} \cdot {\underline {\mathbf{e}}_1} $$
(33)

Considering a shear increment \( {\text{d}}\gamma = {\text{d}}{\theta_1} - {\text{d}}{\theta_2} = {\text{d}}\varepsilon_{12}^{\text{g}} - {\text{d}}\varepsilon_{12}^{\text{h}} \), the Eqs. 31, 32, 33 lead to the specific form of the stress calculation Eq. 13:

$$ {\text{d}}\sigma_{\alpha \beta }^{\text{e}} = {\text{G}}\left( {{\text{d}}\varepsilon_{12}^{\text{g}} - {\text{d}}\varepsilon_{12}^{\text{h}}} \right)\left( {{{\underline {\text{e}} }_\alpha }.{{\underline {\text{g}} }_1}} \right)\left( {{{\underline {\text{e}} }_\beta }.{{\underline {\text{g}} }_2}} \right) = {\text{Gd}}\gamma \left( {{{\underline {\text{e}} }_\alpha }.{{\underline {\text{g}} }_1}} \right)\left( {{{\underline {\text{e}} }_\beta }.{{\underline {\text{g}} }_2}} \right) $$
(34)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisse, P., Aimène, Y., Dogui, A. et al. Hypoelastic, hyperelastic, discrete and semi-discrete approaches for textile composite reinforcement forming. Int J Mater Form 3 (Suppl 2), 1229–1240 (2010). https://doi.org/10.1007/s12289-009-0664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-009-0664-9

Keywords

Navigation