Skip to main content
Log in

Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Tension wood of Laetia procera (Poepp.) Eichl. (Flacourtiaceae), a neo-tropical forest species, shows a peculiar secondary wall structure, with an alternance of thick and thin layers, while opposite wood of this species has a typical secondary wall structure (S1 + S2 + S3). Samples for the study of microstructural properties were collected upon the estimation of growth stresses in the living tree, in order to analyze the correlation of the former with the latter. Investigation using optical microscopy, scanning electron microscopy and UV microspectrophotometry allowed the description of the anatomy, ultra-structure and chemistry of this peculiar polylaminate secondary wall. In the thick layers, cellulose microfibril angle is very low (i.e., microfibril orientation is close to fibre axis) and cellulose microfibrils are well organized and parallel to each other. In the thin layers, microfibrils (only observable in the inner layer) are less organized and are oriented with a large angle relative to the axis of the cell. Thick layers are lightly lignified although thin layers show a higher content of lignin, close to that of opposite wood secondary wall. The more the wood was under tensile stress, the less the secondary wall was lignified, and lower the syringyl on guaiacyl lignin units’ ratio was. The innermost layer of the secondary wall looks like a typical S3 layer with large microfibril angle and lignin occurrence. The interest of this kind of structure for the understanding of stress generation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almeras T, Thibaut A, Gril J (2005) Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees. Trees 19:457–467

    Article  Google Scholar 

  • Archer RR (1986) Growth stresses and strains in trees. Springer, Heidelberg

    Google Scholar 

  • Badel E (1999) Détermination des propriétés élastiques et du retrait d’un cerne annuel de chêne dans le plan transverse: description de la morphologie, mesures des propriétés microscopiques et calculs d’homogénisation

  • Baillères H, Chanson B, Fournier M, Tollier MT, Monties B (1995) Structure, composition chimique et retraits de maturation du bois chez les clones d’eucalyptus. Ann For Sci 52:157–172

    Google Scholar 

  • Bamber R (2001) A general theory for the origin of growth stresses in reaction wood: how trees stay upright. IAWA J 22:205–212

    Google Scholar 

  • Barnett JR (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol Rev 79:461–472

    Article  PubMed  CAS  Google Scholar 

  • Boyd JD (1977) Basic cause of differentiation of tension wood and compression wood. Aust For Res 7:121–143

    Google Scholar 

  • Chaffey N (2000) Microfibril orientation in wood cells: new angles on an old topic. Trends Plant Sci 5:360–362

    Article  PubMed  CAS  Google Scholar 

  • Clair B, Ruelle J, Thibaut B (2003) Relationship between growth stresses, mechano-physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea Sativa Mill.). Holzforschung 57:189–195

    Article  CAS  Google Scholar 

  • Clair B, Almeras T, Sugiyama J (2006a) Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar. Ann For Sci 63:507–510

    Article  Google Scholar 

  • Clair B, Ruelle J, Beauchêne J, Prevost MF, Fournier M (2006b) Tension wood and opposite wood in 21 tropical rainforest species. 1. About the presence of G layer. IAWA J 27:329–338

    Google Scholar 

  • Côté WAJ, Day AC, Timell TE (1969) A contribution to the ultrastructure of tension wood fibers. Wood Sci Technol 3:257–271

    Article  Google Scholar 

  • Dadswell HE, Wardrop AB (1949) What is reaction wood? Aust For 13:22–33

    Google Scholar 

  • Daniel G, Nilsson T (1996) Polylaminate concentric cell wall layering in fibres of Homalium foetidum and its effect on degradation by microfungi. Recent Advances in Wood Anatomy, New Zealand Forest Research Institute:369–372

  • Fahlen J, Salmen L (2003) Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J Mater Sci 38:119–126

    Article  CAS  Google Scholar 

  • Fisher JB, Stevenson JW (1981) Occurrence of reaction wood in branches of dicotyledons and its role in tree architecture. Bot Gaz 142:82–95

    Article  Google Scholar 

  • Fournier M, Baillères H, Chanson B (1994a) Tree biomechanics: growth, cumulative prestress, and reorientations. Biomimetics 2:229–251

    Google Scholar 

  • Fournier M, Chanson B, Thibaut B, Guitard D (1994b) Mesure des déformations résiduelles de croissance à la surface des arbres, en relation avec leur morphologie. Observation sur différentes espèces. Ann Sci for 51:249–266

    Article  Google Scholar 

  • Fujita M, Saiki H, Harada H (1974) Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood fibers. Mokuzai Gakkaishi 20:147–156

    Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Gindl W (2002) Comparing mechanical properties of normal and compression wood in Norway Spruce: the role of lignin in compression parallel to the grain. Holzforschung 56:395–401

    Article  CAS  Google Scholar 

  • Gorshkova T, Morvan C (2006) Secondary cell-wall assembly in flax phloem fibres: role of galactans. Planta 223:149–158

    Article  PubMed  CAS  Google Scholar 

  • Guitard D, Masse M, Yamamoto H, Okuyama T (1999) Growth stress generation: a new mechanical model of the dimensional change of wood cells during maturation. J Wood Sci 45:384–391

    Article  Google Scholar 

  • Hosoo Y, Yoshida M, Imai T, Okuyama T (2002) Diurnal difference in the amount of immunogold-labeled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids. Planta 215:1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Hosoo Y, Yoshida M, Imai T, Okuyama T (2003) Diurnal differences in the innermost surface of the S2 layer in differentiating tracheids of cryptomeria japonica corresponding to a light–dark cycle. Holzforschung 57:567–573

    Article  CAS  Google Scholar 

  • Jourez B, Riboux A, Leclercq A (2001) Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv “Ghoy”). IAWA J 22:133–157

    Google Scholar 

  • Malzbender J (2004) Mechanical and thermal stresses in multilayered materials. J Appl Phys 95:1780–1782

    Article  CAS  Google Scholar 

  • Norberg PH, Meier H (1966) Physical and chemical properties of the gelatinous layer in tension wood fibres of Aspen (Populus tremula L.). Holzforschung 20:174–178

    Article  CAS  Google Scholar 

  • Okuyama T, Takeda H, Yamamoto H, Yoshida M (1998) Relation between growth stress and lignin concentration in the cell wall: Ultraviolet microscopic spectral analysis. J Wood Sci 44

  • Okuyama T, Yoshida M, Yamamoto H (1995) An estimation of the turgor pressure change as one of the factors of growth stress generation in cell walls. Mokuzai Gakkaishi 41:1070–1078

    Google Scholar 

  • Onaka F (1949) Studies on compression and tension wood. Wood research, Bulletin of the Wood research Institute, Kyoto University, Japan 24:1–88

  • Parameswaran N, Liese W (1976) On the fine structure of bamboo fibres. Wood Sci Technol 10:231–246

    CAS  Google Scholar 

  • Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leple JC, Laurans F, Lapierre C, Ruel K (2004) Lignification and tension wood. C R Biologies 327:889–901

    Article  PubMed  CAS  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Prodhan AKMA, Ohtani J, Funada R, Abe H, Fukazawa K (1995) Ultrastructure investigation of tension wood fibre in Fraxinus mandshurica Rupr. var. japonica Maxim. Ann Bot 75:311–317

    Article  Google Scholar 

  • Ruelle J, Clair B, Beauchêne J, Prevost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rainforest species. 2. Comparison of some anatomical criteria. IAWA J 27:341–376

    Google Scholar 

  • Satiat-Jeunemaitre B (1986) Cell wall morphogenesis and structure in tropical tension wood. IAWA Bull. 7:155–164

    Google Scholar 

  • Sinnott EW (1952) Reaction wood and the regulation of tree form. Am J Bot 39:69–78

    Article  Google Scholar 

  • Terashima N (1990) A new mechanism for formation of a structurally ordered protolignin macromolecule in the cell wall of tree xylem. J Pulp Paper Sci 16:150–155

    Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer, Heidelberg

    Google Scholar 

  • Washusen R, Evans R (2001) The association between cellulose crystallite width and tension wood occurence in Eucalyptus globulus. IAWA J 22:235–243

    Google Scholar 

  • Yamamoto H (1998) Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Sci Technol 22

  • Yamamoto H, Kojima Y, Okuyama T, Abasolo WP, Gril J (2002) Origin of the Biomechanical properties of wood related to the fine structure of the multi-layered cell wall. J Biomech Eng 124:432–440

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Okuyama T, Yoshida M (1998) Growth stress generation and microfibril angle in reaction wood. Microfibril Angle in Wood. The proceedings of the IAWA/IUFRO international workshop on the Significance of microfibril angle to wood quality:225–239

  • Yoshida M, Ohta H, Yamamoto H, Okuyama T (2002) Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn. Trees 16:457–464

    Article  CAS  Google Scholar 

  • Yoshida M, Okuda T, Okuyama T (2000) Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura. Ann For Sci 57:739–746

    Article  Google Scholar 

  • Yoshizawa N, Inami A, Miyake S, Ishiguri F, Yokota S (2000) Anatomy and lignin distribution of reaction wood in two Magnolia species. Wood Sci Technol 34:183–196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many thanks to Tancrède Almeras for his critical review of this paper and Ivan Scotti for English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Ruelle.

Additional information

Communicated by H. Cochard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruelle, J., Yoshida, M., Clair, B. et al. Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae). Trees 21, 345–355 (2007). https://doi.org/10.1007/s00468-007-0128-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-007-0128-0

Keywords

Navigation