Skip to main content
Log in

Phosphorus and nitrogen allocation in Allium ursinum on an alluvial floodplain (Eastern France). Is there an effect of flooding history?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The change in phosphorus and nitrogen content in a common geophyte spring species, Allium ursinum, is studied in alluvial forests in relation to three flooding histories related to river regulation: (1) annually flooded, (2) unflooded for 30 years, and (3) unflooded for 200 years. Flood suppression leads to a reduction of available P soil content as well as decreasing the biomass and the amount of phosphorus in plants, but has no significant effect on N plant content. Plant N:P ratio increases with the suppression of floods and is primarily driven by soil N:P ratios, in turn markedly linked to the total nitrogen in the soil. We highlighted a lower nutrient accumulation in leaves during plant growth in unflooded forests. Overall, our results suggest that P was the main limiting factor in unflooded forests while nitrogen was the main limiting factor in annually flooded forests. Flood suppression strongly affects the morphology and nutrient uptake by Allium ursinum and thus nutrient cycling in riverine forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aerts R, Decaluwe H (1994) Nitrogen use efficiency of Carex species in relation to nitrogen supply. Ecology 75:2362–2372. doi:10.2307/1940890

    Article  Google Scholar 

  • Amer F, Saleh ME, Mostafa HE (1991) Phosphate behaviour in submerged calcareous soils. Soil Sci 151:306–311. doi:10.1097/00010694-199104000-00006

    Article  CAS  Google Scholar 

  • Anderson WB, Eickmeier WG (1998) Physiological and morphological responses to shade and nutrient additions of Claytonia virginica (Portulacaceae): implications for the "vernal dam" hypothesis. Can J Bot 76:1340–1349. doi:10.1139/cjb-76-8-1340

    Article  Google Scholar 

  • Anderson W, Eickmeier WG (2000) Nutrient resorption in Claytonia virginica L. Can J Bot 78:832–839. doi:10.1139/cjb-78-6-832

    Article  Google Scholar 

  • Antheunisse AM, Loeb R, Lamers LPM, Verhoeven JTA (2006) Regional differences in nutrient limitation in floodplains of selected European rivers: Implications for rehabilitation of characteristic floodplain vegetation. River Res Appl 22:1039–1055. doi:10.1002/rra.956

    Article  Google Scholar 

  • APHA (1985) Standard methods for the examination of water and wastewater. American Public Health Association, pp 1268

  • Badre B (1996) Recyclage de la matière organique et dynamique des éléments minéraux en milieu forestier alluvial. Influence du degré d'inondabilité. PhD Thesis, Université de Strasbourg, France

  • Baker ME, Weller DE, Jordan TE (2006) Improved methods for quantifying potential nutrient interception by riparian buffers. Landsc Ecol 21:1327–1345. doi:10.1007/s10980-006-0020-0

    Article  Google Scholar 

  • Boerner REJ (1984) Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility. J Appl Ecol 21:1029–1040. doi:10.2307/2405065

    Article  Google Scholar 

  • Covelo F, Rodriguez A, Gallardo A (2008) Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in a Quercus robur population. Plant Soil 311:109–119. doi:10.1007/s11104-008-9662-9

    Article  CAS  Google Scholar 

  • Demars BG, Boerner REJ (1997) Foliar nutrient dynamics and resorption in naturalized Lonicera maackii (Caprifoliaceae) populations in Ohio, USA. Am J Bot 84:112–117. doi:10.2307/2445888

    Article  Google Scholar 

  • Djurdjevic L, Dinic A, Pavlovic P, Mitrovic M, Karadzic B, Tesevic V (2004) Allelopathic potential of Allium ursinum. Biochem Syst Ecol 32:533–544. doi:10.1016/j.bse.2003.10.001

    Article  CAS  Google Scholar 

  • Eggert A (1992) Dry-matter economy and reproduction of a temperate forest spring geophyte, Allium ursinum. Ecography 15:45–55. doi:10.1111/j.1600-0587.1992.tb00007.x

    Article  Google Scholar 

  • Ernst WHO (1979) Population biology of Allium ursinum in northern Germany. J Ecol 67:347–362. doi:10.2307/2259355

    Article  Google Scholar 

  • Fardeau JC, Dorioz JM (2000) La dynamique du phosphore dans les zones humides. In: Fustec E, Lefeuvre JC (eds) Fonction et valeurs des zones humides. Dunod, Paris, pp 143–159

    Google Scholar 

  • Forshay KJ, Stanley EH (2005) Rapid nitrate loss and denitrification in a temperate river floodplain. Biogeochemistry 75:43–64. doi:10.1007/s10533-004-6016-4

    Article  CAS  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology: a functional approach to common British species. Allen & Unwin, London, p 742

    Google Scholar 

  • Güsewell S (2004) N : P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266. doi:10.1111/j.1469-8137.2004.01192.x

    Article  Google Scholar 

  • Güsewell S, Koerselman M (2002) Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol 5:37–61. doi:10.1078/1433-8319-0000022

    Article  Google Scholar 

  • Haycock NE, Pinay G (1993) Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during winter. J Environ Qual 22:273–278

    CAS  Google Scholar 

  • Hérault B, Honnay O (2005) The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests - an emergent group approach. J Biogeogr 32:2069–2081. doi:10.1111/j.1365-2699.2005.01351.x

    Article  Google Scholar 

  • Huang JY, Zhu XG, Yuan ZY, Song SH, Li X, Li LH (2007) Changes in nitrogen resorption traits of six temperate grassland species along a multi-level N addition gradient. Plant Soil 306:149–158. doi:10.1007/s11104-008-9565-9

    Article  CAS  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological experiment. Ecol Monogr 54:187–211. doi:10.2307/1942661

    Article  Google Scholar 

  • Jandl R, Kopeszki H, Glatzel G (1997) Effect of a dense Allium ursinum (L) ground cover on nutrient dynamics and mesofauna of a Fagus sylvatica (L) woodland. Plant Soil 189:245–255. doi:10.1023/A:1004223011834

    Article  CAS  Google Scholar 

  • Joret G, Hébert J (1955) Contribution à la détermination du besoin des sols en acide phosphorique. Ann Agron 2:233–299

    Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727. doi:10.2307/2265777

    Article  Google Scholar 

  • Klimo E (1985) Cycling of mineral nutrients. In: Penka M, Vyskot M, Klimo E, Vasicek F (eds) Floodplain forest ecosystem I. Before Water Management Measures. Elsevier, Amsterdam, pp 425–459

    Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450. doi:10.2307/2404783

    Article  Google Scholar 

  • Lamers LPM, Loeb R, Antheunisse AM, Miletto M, Lucassen ECHET, Boxman AW, Smolders AJP, Roelofs JGM (2006) Biogeochemical constraints on the ecological rehabilitation of river floodplains. Hydobiologia 565:165–186. doi:10.1007/s10750-005-1912-8

    Article  CAS  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Lowrance R, Todd RL, Fail J, Hendrickson O, Leonard R, Asmussen L (1984) Riparian forests as nutrient filters in agricultural watersheds. Bioscience 34:374–377. doi:10.2307/1309729

    Article  Google Scholar 

  • Lowrance R, Vellidis G, Hubbard RK (1995) Denitrification in a restored riparian forest wetland. J Environ Qual 24:808–815

    CAS  Google Scholar 

  • Lugo A, Brinson MM, Brown S (1990) Synthesis and search for paradigms in wetland ecology. In: Lugo A, Brinson MM, Brown S (eds) Ecosystems of the world. Forested wetlands. Elsevier, Amsterdam, pp 447–460

    Google Scholar 

  • Mitsch WJ, Zhang L, Anderson CJ, Altor AE, Hernandez ME (2005) Creating riverine wetlands: ecological succession, nutrient retention, and pulsing effects. Ecol Eng 25:510–527. doi:10.1016/j.ecoleng.2005.04.014

    Article  Google Scholar 

  • Moorhead KK, McArthur JV (1996) Spatial and temporal patterns of nutrient concentrations in foliage of riparian species. Am Midl Nat 136:29–41. doi:10.2307/2426629

    Article  Google Scholar 

  • Ogden R, Reid M, Thoms M (2007) Soil fertility in a large dryland floodplain: patterns, processes and the implications of water resource development. Catena 70:114–126. doi:10.1016/j.catena.2006.08.004

    Article  CAS  Google Scholar 

  • Patrick WH, Mikkelsen DS, Wells BR (1985) Plant nutrient behavior in flooded soil. In: Engelstad OP (ed) Fertilizer technology and use. Soil Science Society of America, Madison, pp 197–228

    Google Scholar 

  • Pinay G, Trémolières M (2000) La rétention et l’élimination de l’azote. In: Fustec E, Lefeuvre JC (eds) Fonction et valeurs des zones humides. Dunod, Paris, pp 129–142

    Google Scholar 

  • Pinay G, Roques L, Fabre A (1993) Spatial and temporal patterns of denitrification in a riparian forest. J Appl Ecol 30:581–591. doi:10.2307/2404238

    Article  Google Scholar 

  • Rutherford JC, Nguyen ML (2004) Nitrate removal in riparian wetlands: interactions between surface flow and soils. J Environ Qual 33:1133–1143

    PubMed  CAS  Google Scholar 

  • Sanchez-Perez JM, Trémolières M (2003) Change in groundwater chemistry as a consequence of suppression of floods: the case of the Rhine floodplain. J Hydrol (Amst) 270:89–104. doi:10.1016/S0022-1694(02)00293-7

    Article  CAS  Google Scholar 

  • Schnitzler A (1995) Successional status of trees in gallery forest along the river Rhine. J Veg Sci 6:479–486. doi:10.2307/3236346

    Article  Google Scholar 

  • Shaw PJ (1994) The effect of pH, dissolved humic substances, and ionic composition on the transfer of iron and phosphate to particulate size fractions in epilimnetic lake water. Limnol Oceanogr 39:1734–1743

    Article  CAS  Google Scholar 

  • Sorrell B, Partridge T, Clarkson B, Jackson R, Chagué-Goff C, Akanayake J, Payne J, Gerbeaux P, Grainger N (2007) Soil and vegetation responses to hydrological manipulation in a partially drained ploje fen in New Zealand. Wetlands Ecol Manag 15:361–383. doi:10.1007/s11273-007-9035-9

    Article  Google Scholar 

  • Takatert N, Sanchez-Perez JM, Trémolières M (1999) Spatial and temporal variations of nutrient concentration in the groundwater of a floodplain: effect of hydrology, vegetation and substrate. Hydrol Process 13:1511–1526. doi:10.1002/(SICI)1099-1085(199907)13:10<1511::AID-HYP828>3.0.CO;2-F

    Article  Google Scholar 

  • Tessier J, Raynal D (2003) Vernal nitrogen and phosphorus retention by forest understory vegetation and soil microbes. Plant Soil 256:443–453. doi:10.1023/A:1026163313038

    Article  CAS  Google Scholar 

  • Trémolières M, Sanchez-Perez JM, Schnitzler A, Schmitt D (1998) Impact of river management history on the community structure, species composition and nutrient status in the Rhine alluvial hardwood forest. Plant Ecol 135:59–78. doi:10.1023/A:1009756428824

    Article  Google Scholar 

  • VanOorschot M (1994) Plant production, nutrient uptake and mineralization in river marginal wetlands: the impact of nutrient-additions due to former land-use. In: Mitsch WJ (ed) Global wetlands: old world and new. Elsevier, Amsterdam, pp 133–150

    Google Scholar 

  • VanOorschot M, Robbemont E, Boerstal M, VanStrien I, VanKerkhovenSchmitz M (1997) Effects of enhanced nutrient availability on plant and soil nutrient dynamics in two English riverine ecosystems. J Ecol 85:167–179. doi:10.2307/2960649

    Article  CAS  Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572. doi:10.1086/283931

    Article  Google Scholar 

  • Weiss D, Trémolières M (1993) Effect of flood frequency on the phosphorus bioavailability in 2 alluvial forests on the Alsace plain (France). C R Biol 316:211–218

    Google Scholar 

  • Weiss D, Trémolières M, Carbiener R (1991) Biodisponibilité comparée du phosphore en fonction des substrats et de la fréquence des inondations dans trois forêts alluviales rhénanes de la plaine d'Alsace. C R Biol 133:245–251

    Google Scholar 

  • Yuan ZY, Li LH (2007) Soil water status influences plant nitrogen use: a case study. Plant Soil 301:303–313. doi:10.1007/s11104-007-9450-y

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are very grateful to the two anonymous referees for greatly improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle Trémolières.

Additional information

Responsible Editor: Alfonso Escudero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trémolières, M., Noël, V. & Hérault, B. Phosphorus and nitrogen allocation in Allium ursinum on an alluvial floodplain (Eastern France). Is there an effect of flooding history?. Plant Soil 324, 279–289 (2009). https://doi.org/10.1007/s11104-009-9955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9955-7

Keywords

Navigation