Skip to main content
Log in

Root exclusion through trenching does not affect the isotopic composition of soil CO2 efflux

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Disentangling the autotrophic and heterotrophic components of soil CO2 efflux is critical to understanding the role of soil system in terrestrial carbon (C) cycling. In this study, we combined a stable C-isotope natural abundance approach with the trenched plot method to determine if root exclusion significantly affected the isotopic composition (δ13C) of soil CO2 efflux (RS). This study was performed in different forest ecosystems: a tropical rainforest and two temperate broadleaved forests, where trenched plots had previously been installed. At each site, RS and its δ13C (δ13CRs) tended to be lower in trenched plots than in control plots. Contrary to RS, δ13CRs differences were not significant. This observation is consistent with the small differences in δ13C measured on organic matter from root, litter and soil. The lack of an effect on δ13CRs by root exclusion could be from the small difference in δ13C between autotrophic and heterotrophic soil respirations, but further investigations are needed because of potential artefacts associated with the root exclusion technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrews JA, Harrison KG, Matamala R, Schlesinger WH (1999) Separation of root respiration from total soil respiration using 13C labeling during free-air carbon dioxide enrichment (FACE). Soil Sci Soc Am J 63:1429–1435

    CAS  Google Scholar 

  • Baggs EM (2006) Partitioning the components of soil respiration: a research challenge. Plant Soil 284:1–5 doi:10.1007/s11104-006-0047-7

    Article  CAS  Google Scholar 

  • Balesdent J, Mariotti A (1996) Measurement of soil organic matter turnover using δ13C natural abundance. In: Boutton T (ed) Mass spectrometry (pp. 83–111). New York.

  • Balesdent J, Girardin C, Mariotti A (1993) Site-Related δ13C of tree leaves and soil organic-matter in a temperate forest. Ecology 74:1713–1721 doi:10.2307/1939930

    Article  Google Scholar 

  • Bhudinperpal Singh, Nordgren A, Ottosson Lofvenius M, Högberg M, Mellander P, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296 doi:10.1046/j.1365-3040.2003.01053.x

    Article  Google Scholar 

  • Bonal D, Bosc A, Goret JY, Burban B, Gross P, Bonnefond JM, Elbers J, Ponton S, Epron D, Guehl JM, Granier A (2008) The impact of severe dry season on net ecosystem exchange in the neotropical rainforest of French Guiana. Glob Change Biol 14(8):1917–1933 doi:10.1111/j.1365-2486.2008.01610.x

    Article  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572 doi:10.1038/25119

    Article  CAS  Google Scholar 

  • Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993) Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperature mixed hardwood forest. Can J Res 23:1402–1407 doi:10.1139/x93-177

    Article  Google Scholar 

  • Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40 doi:10.1111/j.1469-8137.2007.02342.x

    Article  PubMed  CAS  Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635 doi:10.1016/S0038-0717(00)00077-8

    Article  CAS  Google Scholar 

  • Buchmann N, Guehl JM, Barigah TS, Ehleringer JR (1997) Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110:120–131 doi:10.1007/s004420050140

    Article  Google Scholar 

  • Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, dos Santos J, Araujo AC, Kruijt B, Nobre AD, Trumbore SE (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:S72–S88 doi:10.1890/01-6012

    Article  Google Scholar 

  • Cheng W (1996) Measurement of rhizosphere respiration and organic matter decomposition using natural 13C. Plant Soil 183:263–268 doi:10.1007/BF00011441

    Article  CAS  Google Scholar 

  • Davidson GR (1995) The stable isotopic composition and measurement of carbon in soil CO2. Geochim Cosmochim Acta 59:2485–2489 doi:10.1016/0016-7037(95)00143-3

    Article  CAS  Google Scholar 

  • Ekblad A, Hogberg P (2001) Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia 127:305–308 doi:10.1007/s004420100667

    Article  Google Scholar 

  • Ekblad A, Boström B, Holm A, Comstedt D (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143:136–142 doi:10.1007/s00442-004-1776-z

    Article  PubMed  Google Scholar 

  • Epron D, Le Dantec V, Dufrene E, Granier A (2001) Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiol 21:145–152

    PubMed  CAS  Google Scholar 

  • Epron D, Ngao J, Granier A (2004a) Interannual variation of soil respiration in a beech forest ecosystem over a six-year study. Ann Sci 61:499–505 doi:10.1051/forest:2004044

    Article  Google Scholar 

  • Epron D, Nouvellon Y, Roupsard O, Mouvondy W, Mabiala A, Saint-Andre L, Joffre R, Jourdan C, Bonnefond J-M, Bebigier P, Hamel O (2004b) Spatial and temporal variations of soil respiration in a eucalyptus plantation in Congo. For Ecol Manage 202:149–160 doi:10.1016/j.foreco.2004.07.019

    Article  Google Scholar 

  • Fang C, Moncrieff JB (2001) The dependence of soil CO2 efflux on temperature. Soil Biol Biochem 33:155–165 doi:10.1016/S0038-0717(00)00125-5

    Article  CAS  Google Scholar 

  • Fang C, Moncrieff JB, Gholz HL, Clark KL (1998) Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant Soil 205:135–146 doi:10.1023/A:1004304309827

    Article  CAS  Google Scholar 

  • Fessenden JE, Ehleringer JR (2003) Temporal variation in δ13C of ecosystem respiration in the Pacific Northwest: links to moisture stress. Oecologia 136:129–136 doi:10.1007/s00442-003-1260-1

    Article  PubMed  Google Scholar 

  • Formanek P, Ambus P (2004) Assessing the use of δ13C natural abundance in separation of root and microbial respiration in a Danish beech (Fagus sylvatica L.) forest. Rapid Commun Mass Spectrom 18:897–902 doi:10.1002/rcm.1424

    Article  PubMed  CAS  Google Scholar 

  • Gaumont-Guay D, Black TA, Griffis TJ, Barr AG, Morgenstern K, Jassal RS, Nesic Z (2006) Influence of temperature and drought on seasonal and interannual variations of soil, bole and ecosystem respiration in a boreal aspen stand. Agric For Meteorol 140:203–219 doi:10.1016/j.agrformet.2006.08.002

    Article  Google Scholar 

  • Gottlicher SG, Steinmann K, Betson NR, Hogberg P (2006) The dependence of soil microbial activity on recent photosynthate from trees. Plant Soil 287:85–94 doi:10.1007/s11104-006-0062-8

    Article  Google Scholar 

  • Gourlet-Fleury S, Laroussinie O, Guehl J (2004) Ecology and management of a Neotropical rainforest. Lessons drawn from Paracou, a long- term experimental research site in French Guiana. Elsevier, Paris, p 350

    Google Scholar 

  • Granier A, Ceschia E, Damesin C, Dufrene E, Epron D, Gross P, Lebaube S, Le Dantec V, Le Goff N, Lemoine D, Lucot E, Ottorini JM, Pontailler JY, Saugier B (2000) The carbon balance of a young Beech forest. Funct Ecol 14:312–325 doi:10.1046/j.1365-2435.2000.00434.x

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor A, Ekblad A, Högberg M, Nyberg G, Ottoson-Löfvenius M, Read D (2001) Large-scale forest gridling shows that current photosynthesis drives soil respiration. Nature 411:789–792 doi:10.1038/35081058

    Article  PubMed  Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grunwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik U, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Change Biol 7:269–278 doi:10.1046/j.1365-2486.2001.00412.x

    Article  Google Scholar 

  • Keeling CD (1958) The concentration and isotopic abundance of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334 doi:10.1016/0016-7037(58)90033-4

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448 doi:10.1016/j.soilbio.2005.08.020

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Ehrensberger H, Stahr K (2001) Carbon partitioning and below-ground translocation by Lolium perenne. Soil Biol Biochem 33:61–74 doi:10.1016/S0038-0717(00)00115-2

    Article  CAS  Google Scholar 

  • Lalonde RG, Prescott CE (2007) Partitioning heterotrophic and rhizospheric soil respiration in a mature Douglas-fir (Pseudotsuga menziesii) forest. Can J Res 37:1287–1297 doi:10.1139/X07-019

    Article  CAS  Google Scholar 

  • Le Dantec V, Epron D, Dufrêne E (1999) Soil CO2 efflux in a beech forest: comparison of two closed dynamic systems. Plant Soil 214:125–132 doi:10.1023/A:1004737909168

    Article  Google Scholar 

  • Lee MS, Nakane K, Nakatsubo T, Koizumi H (2003) Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant Soil 255:311–318 doi:10.1023/A:1026192607512

    Article  CAS  Google Scholar 

  • Li YQ, Xu M, Zou XM (2006) Heterotrophic soil respiration in relation to environmental factors and microbial biomass in two wet tropical forests. Plant Soil 281:193–201 doi:10.1007/s11104-005-4249-1

    Article  CAS  Google Scholar 

  • Longdoz B, Yernaux M, Aubinet M (2000) Soil CO2 efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution. Glob Change Biol 6:907–917 doi:10.1046/j.1365-2486.2000.00369.x

    Article  Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740 doi:10.1046/j.1365-3040.1999.00453.x

    Article  CAS  Google Scholar 

  • Maunoury F, Berveiller D, Lelarge C, Pontailler JY, Vanbostal L, Damesin C (2007) Seasonal, daily and diurnal variations in the stable carbon isotope composition of carbon dioxide respired by tree trunks in a deciduous oak forest. Oecologia 151:268–279 doi:10.1007/s00442-006-0592-z

    Article  PubMed  Google Scholar 

  • Miller JB, Tans PP (2003) Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B Chem Phys Meterol 55:207–214 doi:10.1034/j.1600-0889.2003.00020.x

    Article  Google Scholar 

  • Mortazavi B, Chanton JP, Prater JL, Oishi AC, Oren R, Katul G (2005) Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions. Oecologia 142:57–69 doi:10.1007/s00442-004-1692-2

    Article  PubMed  Google Scholar 

  • Murtaugh PA (2007) Simplicity and complexity in ecological data analysis. Ecology 88:56–62 doi:10.1890/0012-9658(2007)88[56:SACIED]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Ngao J, Epron D, Brechet C, Granier A (2005) Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter. Glob Change Biol 11:1768–1776 doi:10.1111/j.1365-2486.2004.01014.x

    Article  Google Scholar 

  • Ngao J, Longdoz B, Granier A, Epron D (2007) Estimation of autotrophic and heterotrophic components of soil respiration by trenching is sensitive to corrections for root decomposition and changes in soil water content. Plant Soil 301:99–110 doi:10.1007/s11104-007-9425-z

    Article  CAS  Google Scholar 

  • Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA (2003) The application and interpretation of keeling plots in terrestrial carbon cycle research. Global Biogeochem Cycles 17:1022–1037 doi:10.1029/2001GB001850

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179 doi:10.1007/s004420000578

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269 doi:10.1007/s00442-003-1218-3

    Article  PubMed  Google Scholar 

  • Rochette P, Flanagan LB, Gregorich EG (1999) Separating soil respiration into plant and soil components using analyses of the natural abundance of 13C. Soil Sci Soc Am J 63:1207–1213

    CAS  Google Scholar 

  • Saiz G, Green C, Butterbach-Bahl K, Kiese R, Avitabile V, Farrell EP (2006) Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant Soil 287:161–176 doi:10.1007/s11104-006-9052-0

    Article  CAS  Google Scholar 

  • Salimon CI, Davidson EA, Victoria RL, Melo AWF (2004) CO2 flux from soil in pastures and forests in southwestern Amazonia. Glob Change Biol 10:833–843 doi:10.1111/j.1529-8817.2003.00776.x

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W. H. Freeman and Co., New York, p 887

    Google Scholar 

  • Steinmann KTW, Siegwolf R, Saurer M, Korner C (2004) Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia 141:489–501 doi:10.1007/s00442-004-1674-4

    Article  PubMed  Google Scholar 

  • Subke J-A, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF (2004) Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139:551–559 doi:10.1007/s00442-004-1540-4

    Article  PubMed  Google Scholar 

  • Subke JA, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Change Biol 12:921–943 doi:10.1111/j.1365-2486.2006.01117.x

    Article  Google Scholar 

  • Tu K, Dawson T (2005) Partitioning Ecosystem Respiration Using Stable Isotope Analysis of CO2. In: Flanagan LB, Ehleringer JR, Pataki DE, Mooney M (eds) Stable isotopes and biosphere–atmosphere interactions: Processes and biological controls. Elsevier Academic, San Diego, pp 125–135

    Chapter  Google Scholar 

  • Yim MH, Joo SJ, Shutou K, Nakane K (2003) Spatial variability of soil respiration in a larch plantation: estimation of the number of sampling points required. For Ecol Manage 175:585–588 doi:10.1016/S0378-1127(02)00222-0

    Article  Google Scholar 

  • Zobitz JM, Keener JP, Schnyder H, Bowling DR (2006) Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research. Agric For Meteorol 136:56–75 doi:10.1016/j.agrformet.2006.01.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the “Office National des Forêts” for facilitating experimental work in Hesse and Barbeau forests, and CIRAD in Paracou forest. They also thank Jean-Yves Goret, Nathalie Têtefort, Elli Lentilus, Bernard Clerc, François Willm, Dyane Franey, Laurent Vanbostal and Jean-Yves Pontailler for their support during the field experiments in the different forests.

This work was supported by the French National programme ‘ACI/FNS ECCO, PNBC’ and by the ‘Observatoire de Recherche en Environnement “fonctionnement des écosystèmes forestiers’ (F-ORE-T).

Authors also acknowledge the ‘Métabolisme-Métabolome’ platform of the IFR87 and the ‘isotopic spectrometry’ platform of the IFR 110 for the isotopic facilities and Christan Hossan, Claude Brechet and Caroline Lelarge for isotopic analyses. The study complies with current French law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Chemidlin Prévost-Bouré.

Additional information

Responsible Editor: Per Ambus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chemidlin Prévost-Bouré, N., Ngao, J., Berveiller, D. et al. Root exclusion through trenching does not affect the isotopic composition of soil CO2 efflux. Plant Soil 319, 1–13 (2009). https://doi.org/10.1007/s11104-008-9844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9844-5

Keywords

Navigation